
/

NASA Contractor Report 178386

's.

The Ccrnputational Structural Mechanics Testbed
Architecture: Volume I11 - The Interface

(hASd-CR- 178x6) TEZ CCMEC3 &!I IC L A t N89- 15435 S I E U C T U R A L 1 l i C i i I l i I C S l l E S T E E O B B C B I T E C T U R E .
VCLUBB 2: TBE Ib lEbPACE (Lockteed Lissiles

Unclas all0 S & a C € CO.) 212 F CSCL 2OK
G3/39 0187247

Carlos A. Felippa

Lockheed Missiles and Space Company, Inc.
Palo Alto, California

Contract NAS 1- 18444

December 1988

National Aeronautics and
Space Ad mint strati on
Langley Research Center
Hampton, Virginia 23665-5225

Preface
r

c

This five-volume document presents C o m m a n d Language for Applied Mechanics
- Processors (CLAMP). As the name suggests, CLAMP is designed to control the’flow
of execution of Processors written for the Network of In te rac t ive Coniputational
Elements (NICE), an integrated software system developed a t the Applied Mechanics
Laboratory.

The syntax of CLAMP is largely based on a 1969 command language (NOSTRA
Input Language (NIL)). The language is written in the form of free-field source command
records. These records may reside on ordinary text files, be stored as global database
text elements, or be directly typed at a terminal. These source commands are read and
processed by an interpreter C o m m a n d Language Interface Program (CLIP). The
output of CLIP does not have meaning per se. The Processor that calls CLIP is responsible
for translating the decoded cotnmarids into specific actions.

NIL and its original interpreter “LODItEC,” which now constitutes the “kernel” of
CLIP, has been put to extensive field testing for over a decade. NIL has been the input
langiiage used by all application programs developed by the author since 1969 to 1979.
(LODREC also drives the relational data manager RIM developed by Boeing for NASA
LaRC.) During this period many features of varying degree of complexity were tried and
about half of them discarded or replaced after extensive experimentation. CLAMP rep-
resents a significant enhancement of NIL, particularly as regards to directive processing,
interface with database management faci1itic.s. and interprocessor control. The current
version is thereforc believed to be powerfid, efficient, and easy to use, and well suited to
interactive work.

Volume I (NASA CR 178384) presents the basic elements of the CLAMP language
a n d is intended for all iisers. Volume I1 (NASA CR 178385), which covers CLIP directives,
is intended for intermediate and advanced users. Volume I11 (NASA CR 178386) deals
with the CLIP-Processor interface and related topics, and is meant only for Processor
developers. Volume IV (NASA CR178387) describes the Global Database Manager: GAL-
DDM and Volume V (NASA CR 178388) describes the Input-Output Manager: DMGASP.

All volumes are primarily organized as reference documents. Except for feeble at-
tempts here and t h e (e.g. s3.1 in Volume I and Appendix A in Volume 111), the presen-
tation style is not tutorial.

i

Acknowledgements

The ancestor of CLIP, LODREC, was patterned after the input languages of ATLAS and
SAIL, two structural analysis codes that evolved at Boeing in the late 1960s. Newer ian-
guage capabilities, notably command procedures and macrosymbols, have been strongly
influenced by the UnixTM operatirig system and the C programming language, as pop-
ularized by Kernighan, Plauger and Ritchie in their textbooks. The Unix "shell/kernel"
concept permeates t,he architecture of tlie NICE system, of which CLIP is a key component.

The author is indebted to the .many CLIP users for constructive criticism and sugges-
tions that have resiilted in a steady improvement of the interpreter, tlie CLAMP language,
and its dociimentation over the past four years. Special thanks are due John DeRuntz, Don
Flaggs, Rill Greenc, Stan .Jenscn, Peter Kellner, Warren Iloskins, Tina Lotts, Ian Math-
ews, Bill Loden, Charles Perry, Charles Rankin, Jan Schipmolder, Gary Stanley, Brian
Stocks, Lyle Swenson, Phil IJtiderwood, Frank Weiler and Jeff Wurtz. Dave Cunningham
contributed VAX/VMS environment query routines.

The development of CLIP during the period 1980-1981 was supported by the Advanced
Software Architecture Project of the Independent Research Program of Lockheed Missiles

gratefully acknowledged. The development of several CLIP enhancements reported here
has been supported by NASA Langley Researcli Center on contract NAS1-17660.

l and Space Co., Inc. The support received from 1982 to date from MSD's Structures is

..
I 1

Contents

1

2

3

4

5

6

7

8

9

10

11

12

13

Introduction . 1-1

Control Entry Points . 2- 1

Standard Command Format . 3- 1

Item Loading Overview . 4- 1

Searching . 5- 1

Loading Individual Items . 6- 1

Loading Itern Lists . 7- 1

Loading Keywords and Qualifiers . 8- 1

Retrieving Item Information . 9- 1

Miscellaneous Operations . 10- 1

R,etrieving Riin Informatioil . . 11-1

Retrieving Macrosymbol Values . 12-1

Workpool Manager Interface . . 13-1

b

A pp end ices

A A $300,000 Calculator . A- 1

B A Direct Boundary Element Processor . . B-1
C Help Files . c- 1

D Low-Level Utilities . 6 D-1

i i i

THIS PAGE LEFT BLANK INTENTIONALLY.

3

iv

1
Introduction

1-1

Sectlon 1: INTRODUCTION

$1.1 THE CLIP-PROCESSOR INTERFACE

The running Processor communicates with CLIP through entry points provided in the
CLIP shell. The entry points are implemented as FORTRAN 77 functions or subroutines.
h l l communication data are passed through arguments or function returns. There is no
communication through cornnioii blocks, which would degrade modularity. The set of entry
points constitutes the CLIP-Processor Interface. The description of this interface is
the main topic of the present Volume.

The entry points described here can be classified in three types:

CLIP Control. Calls to these entry points control subsequent command-loading actions.
These entry points are alphabetically listed it1 Table 1.1 and described in Section 2.
By far the most important is CLREAD, which directs CLIP to load the next command;
it supersedes the old entry point CLNEXT. The other entry points in this class are
primarily for advanced applications.

Item Processrng. A command has been read in and decoded by CLIP (generally in
response to a CLREAD request). Next., the cornniand interpreter shell of the Processor
accesses keywords, qualifiers and data values so as to carry out. the actions requested
by the user. A fairly large number of entry points is provided for convenient im-
plementation of these functions. These entry points are summarized in Tables 1.2
through 1.7, which are grouped in accordance to the organization of later Sections of
t h is Vo 1 u r r le.

2.

3. Afiscellaneous Utilities. These entry points provide miscellaneous services that do not
fall within the preceding two classes. For example: getting run information, evaluating
macrosymhols, converting characters to Hollerith arid vice versa, comparing keywords.
Some of these services are not necessarily tied to CLIP, but involve more primitive
actions. Thew entry points are summarized in Tables 1.8 through 1.10.

The material described in the following sections is primarily intended for processor devel-
opers, and not for the general public. Accordingly, a fairly high level of proficiency with
FORTRAN 77 is assumed.

If you are a processor developer, one irnportant thing to keep in mind is that the
Processor-CLlP rcla t ionship is of tnnstrr-slave type. More precisely,

Y

That is, your Processor (or, more precisely, the Processor Executive) can invoke CLIP, but
the opposite is not, true.

Of course, the control hierarchy is affected by the presence of other elements, such as
user procedures arid command procedures. Nevertheless, from a technical standpoint the
mas ter-sl ave relationship holds.

1-2

~ ~~ ~

51.1 T ” E CLIP-PROCESSOR INTERFACE

Table f .f CLIP Contml Entry Points

Entry Point
Name l’ii rpose

Section
in which

described

CLGET Get next command image $2.3

CLPUT Insert immediate one-line message $2.4

CLPUTM Insert mu1 t iline message $2.5

CLPUTW Insert one-line message and wait §2.6

CLREAD Get arid parse next, command $2.7

CLNEXT Same as CLREAD $2.7

c

it

1-3

Section 1: INTRODUCTION

Il'ahlo I .2 Entry Points for Searching

Entry Point
Name Purpose

Section
in which

described

ICLSEK Search for keyword $5.2

ICLSEq Search for qualifier 55.3

ICLKYP Search for keyword position $5.4

IcLqLP Search for qualifier position $5.5

Table f .3 Eiitry Points for Loading Individual Item Values

Entry Point
Name Purpose

Section
in which

described

CCLVAL Get character value of itern $6.2

DCLVAL Get double-precision floating value of item 56.3

FCLVAL Get single-precision floating value of item $6.4

ICLVAL Get iribeger value of individual itern $6.5

HCLV AL Get nearest integer of iridividual item $6.6

XCLVAL Get single-precision complcx value of item pair 56.7

ZCLVAL Get double-precision cornplcx value of item pair $6.8

1-4

$1.1 T H E CLIP-PROCESSOR INTERFACE

Table 1.4 Entry Points for Loading Item List Values

Entry Point
Name Purpose

Section
in which

described

CLVALC Load character list $7.2

CLVALD Load double-precision floating list $7.2

CLVALF Load single-precision floating list $7.4

CLVALI Load integer list $7.2

CLVALN Load nearest-integer list $7.2

Table 1.5 Entry Points for Loading Keywords & Qualifiers

Entry Point
Name Purpose

Section
in which

d esc r i bed

CLOADK Load keywords $8.2

CLOADq Load qualifiers $8.3

CCLKEY Get keyword given position $8.4

CCLquL Get qualifier given position $8.5

ICLNKY Get number of keywords $8.6

ICLNqL Get number of keywords $8.7

1-5

Sectlon 1: INTRODUCTION

Table 1.6 Entry Points for Retrieving Item Information

Entry Point
Name Purpose

CCLPRE Get item prefix

CCLSEP Get item separator

ICLIST Get list length

ICLNIT Get number of items

ICLOAD Get current load pointer

ICLTYP Get, itern type code

Section
in which

described

$9.2

$9.3

$9.4

$9.5

$9.6

$9.7

Table 1 . 7 Entry Points for Miscellaneous Operations

Entry Poitit
Name Purpose

Section
in which

described

CLEIIIF Get inforrriation on specific error $ 10.2

CLERR1 Get error counters $10.3

CLGLIM Get last, image loaded $ 10.4

CLSLIM Show last itnage loadcd $ 10.5

CLSLOP Set, load pointer $ 10.6

1-6

~ ~~

$1.1 T H E CLIP-PROCESSOR INTERFACE

Table I .R Eiitry Poiiits for Retrieving Run Iiiforriiatiori

Section
Entry Point an whic h
Name Purpose described

CLCHAR Get information on cont,rol characters $11.2

ICLRUI? Get information on run state and parameters $11.3

ICLUIJT Get information 011 logical unit 511.4

Table 1.9 Eiitry Poiiits for Evaluating Macrosyrribols and Expressions

Entry Poitit
Name Purpose

Section
in which

described

CCLMAC Evaluate cliaracter niacrosyinbol $12.2

DCLMAC Evaluate double-precision floating macrosymbol $12.2

FCLMAC Evaluate single-precisioii floating macrosymbol $12.2

ICLMAC Evaluate integer macrosymbol $12.2

NCLMAC Evaluate nearest-integer riiacrosyrnbol $12.2

1-7

Sectlon 1: INTRODUCTION

t

THIS PAGE LEFT BLANK INTENTIONALLY.

Y

1-8

3

Control
Entry Points

2- 1

Section 2: CONTROL ENTRY POINTS

$2.1 GENER-AL DESCRIPTION

Thc? control entry points presented in this St?cbion are used to retrieve commands and to
si1 bmi t messages.

For convenience we recapitulate some of the basic terminology already discussed a t
length i n Volume I.

A command can be an ordinary cotnniand or a directiue.

Ordinary commands are handled by the Processor Executive.

Directives are handled internally by CLIP.

Commands may be submitted by either the User or the Processor.

A message is a command submitted by the Processor.

~~

R.etrieving Commands

Entry points CLGET and CLREAD are used to “get the next ordinary command”. As noted
in Volume I , any directive encountered along the way is processed by CLIP; control does
not return to the Processor until the next ordinary command has been found in a buffer
area known as dataline collector (see 5 2 . 2) .

If you call CLREAD, the command items are processed by CLIP and stored in the
1)ecoded Item l’able described in $4.1 . (CLREAD replaces the entry point CLNEXT, which
nolietheless will be retained in future versions of CLIP.)

If you call CLGET, the command irnage will be furnished to you untouched (except for
tlie substitution of niacrosyiribols and formal procedure arguments). In general CLREAD
should be used unless there is a good reason to do otherwise. Two cases in which CLCET
find application are:

1 . Yoii want t o do voi ir own it,m parsing l w c a i i w the rilles 11sied by C1,lP conflict with
the ones you prefer.
You are attaching CLIP to an existing command-driven program. In this caae all
you need to do is “disconnect” the old “read card” statement(s) and feed the images
provided by CLGET instead.

2.

2--2

$2.1 GENERAL DESCRIPTION

Sending Messages

Three entry points are provided to send messages: CLPUT, CLPUTW and CLPUTM. These
replace the old entry point CLMAIL, which should be viewed as obsolete.

If your message is a “one-liner,” as the great majority are, you should use either CLPUT
or CLPUTW. Your message is then placed in front of the dataline collector aa described in
$2.2. No input/output takes place (as it was the case under CLMAIL); just a memory-to-
memory copy.

You should use CLPUT to send messages containing one or more directives to be pro-
cessed immediately by CLIP, before it rcturris control back to the calling program. But
if the message contains an ordinary command, you should use the “put and wait” entry
point CLPUTW instead. If you call CLPUTW, CLIP will not process the message text imme-
diately brit simply stores it and returns control to the calling program; the message will
be accessed by the next CLREAD or CLCET call. Further operational details are provided in

On rare occasions, a multiline message must be sent as a block, and several one-line
messages will not do the job properly. For this situation CLIP provides CLPUTM, which
opens a scratch file and writes the message hies to it. When the end of the message is
signalled, CLPUTM rewinds the file and “adds” it to the command source stream just like
an ADD directive would.

$2.2.

2-3

Section 2: CONTROL ENTRY POINTS

52.2 COMMAND DYNAMICS

The Dataline Collector

Understanding “command dynamics” for complex situations requires some knowledge of
the existence of the dataline collector and how commands are entered and removed from it.
This will be explained in this subsection using examples to illustrate the basic procedures.

The dataline collector, often referred to as “collector” for brevity, is a long character
string that holds text of comniands read from the command source file as well as messages
sent by the Processor.

‘I‘he collector functions as a staging area that buffers fluctuations in activity. For
example, if an arriving data line contains several commands, all of them are placed in
the collector to wait for extraction. If a comiriand extends over several data lines, the
entire text is accumulated in the collector and continuation marks erased. Commands
are extracted from the front of the collector, one at a time, in response to calls by the
Processor.

Commands that arrive from the source file are queued and treated on a first-in, first-
out basis. One-line messages that arrive from the Processor via CLPUT or CLPUTW are stacked
and treated on a last-in, first-out basis. Messages that arrive via CLPUTM are queued.

Us er Comma 11 cl s

To facilitate visualization, all examples given below assume conversational operation: there
is a user sitting at a terminal who types coninlands in response to CLIP prompts.

When the Processor starts up, the collector is empty. Suppose that CLIP is first
entered by a CLREAD call. CLIP prompts the user, who responds by typing in the same
ltne three commands: an ordinary command, UC1, a directive, UD1, and another ordinary
command, U C 2 :

UCI ; UDi ; UC2

(UC and UD are used to denote “ordinary user command” and “user directive”, respec-
tively.) Since CLREAD was called, CLIP removes UC1 from the collector and parses it. On
exit from CLREAD, the collector configuration is

with the parsed contents of UC1 in the I l t~odcd ltern Table discussed in 54.1.
Upon processing conimand UCI, the Processor calls CLREAD again. Since the collector

is not empty, CLIP does riot prompt the user for triore data. First it processes directive
UDI, which is removed from the collector (for simplicity, let 11s assume that the directive
does riot affect si1 hseqncnt, corrimarid reading, as a PROCEDURE or ADD directive would).
Then CLIP removes UC2 and parses it. On return from CLREAD, the collector is empty.

2-4

52.2 COMMAND DYNAMICS

t

When CLREAD is called a third tinie, CLIP notices that the collector is empty and
prompts the user for more data. 111 response the user types two commands: UC3 and UC4
in the same line. CLIP extracts UC3 aud parses it. On return frorri CLREAD, the collector
configuration is

with UC3’s parsing in the Decodcd Item Table. On the next entry, the user is not prompted
for data; UC4 is removed and parsed, arid so on.

The key feature of t h i s procedure is that each reference to CLREAD retrieves one and
eract ly one user command: the z t h call retrieves UCi. It doesn’t matter if the user types
one command per line, one command over many lines, or many commands per line; what
the Processor “sees” is always the sequence

U C] ; uc2 ; uc3 ; uc4 ...

Furbhermore, the presence of directives (more precisely, directives that do not modify the
command stream) does not affect what the Processor receives.

REMARK 2.1
Replacing CLREAD by CLGET in the above narrative does not change things in any essential way; it
orily influences t,he “packaging” of the information received by the Processor.

REMARK 2.2

The sequence of events is also identical if the hunian user is replaced by a script file or a command
procedure. Of course, in such a case CLIP does not issue prompts.

Immediate Messages

The presence of messages sen t by the Processor may introduce complications. Consider
first one-line messages, which are the ones niost frequently used.

Let’s go back to the collctctor corifigiiratioii(])(page 2-4) that follows the first CLREAD.
Before calling CLREAD again, suppose that the Processor sends through CLPUT a message
conta in ing two directives: P D I a n d PD2 (whcrc PT) stands for ‘‘processor directive”). The
message is stacked in front of the collector, so at that point the collector configuration
becomes

Since CLPUT has been called, CLIP proceeds to digest the message immediately. It extracts
PD1 and PDZ (in that order) from the collector, and performs the tasks indicated in them.
On return from CLPUT, the collector configuration is again given by collector configuration
(1). The next CLREAD call then processes UD1 and UC2, so there is no change with respect
to the no-message case.

2-5

Sectlon 2: CONTROL ENTRY POINTS

REMARK 2.3

Certain directives, notably ADD and CALL, erase the collector. If they arrive as messages, commands
already there are lost.

Deferred Messages

But now assume that the message contains an ordinary command, PCI, which is submitted
via the “put and wait” entry point CLPUTW. As before, the message is stored in front of the
collector:

but now CLIP does not process the message; it retiiriis leaving the collector in the preceding
state. Now the next CLREAD call retrieves PC1 and tiof UC2. If no otlier messages intervene,
the second user commarid is retrieved by the third CLREAD call. The user is of course
unaware of this reshuffling, but t he Processor logic must account for these variations as
appropriate.

R E M A R K 2.4

You may want to work out what happens i f PC1 were sent through CLPUT instead of CLPUTW. After
the next CLREAD call, you will find that P C 1 has disappeared without a trace! This is the reason for
recommending the use of put-and-wait. There are a few cases, however, in which the submitting
an ordinary command as immediate message has applications in conjunction with CLCET.

REMARK 2.5

Jf yoti call CLPUTW twice in a row to submit, ordinary commands, the order is reversed. Let’s
say the first call sends P C I and the second one PC2. As these commands are stocked, the
_- last one -- is processed __ - - first; i . e . , in the order PC2, PCI. The same “reversal” occurs for more calls.
Should this be undesirable, either rexerse_the order of ttie calls, or send them as components of a
ai 11 g le message.

Multiliiie Messages

hlliltiline messages are less freqilently used th;m one-line messages so there is no need to
delve into much dotail here. ‘I’hc key diffcrencti is 1 hat the contents of a message submitted
through CLPUTM art’ processed as if thcy appcwed on the back of the collector.

If the collector is empty when ttie nicssage is sent, there is no difference between
CLPUTW arid CLPUTM, because rtiultiline rriessages arc? always made to wait. But if the
collector is noner~ipty the went sequence m a y bc quite different.

when the collector has the configuration(l)(page 2-4).
visualized as

For example, let us say that dircctivcs PDI arid PD2 are submitted through CLPUTM
Upon return the state may be

§2.2 C O M M A N D DYNAMICS

in which PD1 and PDZ arc riot physically iri thc collector but in a card-image file to be
added once UC2 is removed. The next (second) CLREAD call will remove UDr and UC2,
so directives PD1 arid PD2 will not be processed until the third CLREAD call. (You should
contrast this to the one-line message sirbiiiission, in which PD1 and PD2 are processed
ahead of UD1 and UCZ.)

If the user had entered UC1 and UC2 0x1 different lines, the sequence of events would be
different. Because o f these unpredictable side effects, it is best to avoid multiline messages
if possible, or to precede ttiern with an EOL directive, wliich empties the dataline collector
(see Volume 11).

2-7

Section 2: CONTROL ENTRY POINTS

$2.3 GET NEXT COMMAND IMAGE: CLGET

Erit ry point CLCET should bc callcd inst.c!ad o f CLREAD if y o u want lo retrieve command
images and inhibit CLIP parsing. You provide a receiving character argument into which
CLCET stores the image of the last command loaded. Two reasons for this modus operandi
are discussed in 52.1.

Calling sequence

CALL CLGET (PROMPT, S P L A S H , IMAGE, NCH)

Input argrr tn en t s

PROMPT

SPLASH

Same as for CLREAD; cf. 52.7.

Same as for CLREAD; cf. 52.7.

0 ut p ut a rg u m e nt s

IMAGE

NCH

,A character st,ring into which CLGET places the image of the next
ordinary corrirnarid found in the collector (cf. $4.2). The number of
characters transferred into IMAGE cannot exceed the passed length; con-
sequentfly, if the length is insufficient the image may be truncated.

T h e absolute value of NCH is the number of characters loaded into IMAGE.
,4 negative value indicates t ha t the command image has been t runca ted
because its length exceeds tha t of the passed length of IMAGE.

REMARK 2.6

Macrosymbols in the command input are normally replaced by their values in the returned image.
This default mode inay be altered by sending a SET MODE directive.

REMARK 2.7

I f lines are being rcad froin a romniand procedure, forrtial argument references are normally
replaced by their values in the IMAGE text.. ‘l’liis dc>fault mode may be altered by sending a SET
MODE direr t ive.

REMARK 2.8

Directives inserted before the next user comrnaiid are processed by CLIP and not returned in
IMAGE. Thus the operation of CLGET is externally the saiiie as that of CLREAD. (The user cannot
tell the difference between the two).

t

2--8

$2.3 GET N E X T COMMAND IMAGE: CLGET

EXAMPLE 2.1

Consider the following code block:

CHARACTER*80 IMAGE

CALL CLGET (' Enter Command>', ' ' , IMAGE, 11)
PRINT *, IMAGE(1 :N)

. . .

In response to the prompt, the user types

Enter Command) DO WHAT FOLLOWS

(The blank after > is part of the prompt, riot of the response.) On return from CLGET, argument
IMAGE will contain DO WHAT FOLLOWS and argument N will be set to 15, which is the length of the
command line.

Now suppose that IMAGE had been declared CHARACTER*l2, or that the third argument in the
call to CLGET had been IMAGE(1: 12). Then the returned comrnand is truncated to 12 charactera:

DO WHAT FOLLOWS

and 11 returns -12.

t

2-9

Section 2: CONTROL ENTRY POINTS

$2.4 SEND ONE-LINE IMMEDIATE MESSAGE: CLPUT

The CLPUT entry point is used to send a one-line message containing directives to be
interpreted by CLIP. The message may contain more than one directive, but should not
normally contain user commands.

Calling sequence

I CALL CLPUT (TEXT) I

Input orgut77c nt

TEXT - 7 1 he text of the messagc. It, should not exceed 480 characters. The text
may contain one directive, or several directives separated by semicolons.

REMARK 2.9

If you want to send ordinary commands through this entry point, be sure you understand the
material presented in 52.2.

EXAMPLE 2.2
I Consider the call

I CALL CLPUT (' 4 : ~ e t echo = on.verboee ; *show CBB '1

I This call sends n liiie that coritaiiis t,wo directives to be irrirnedialely processed by CLIP.

2 10

$ 2 . 5 SEND MULTILINE MESSAGE: CLPUTM

$2.5 SEND MULTILINE MESSAGE: CLPUTM

There are occasions in which the message to be sent is so voluminous that it must be
broken down into several lines of text. In this case the proper message entry point to call
is CLPUTM. This is normally done in a loop, one line per call, and the last line is signalled
by an end-of-message flag.

Calling sequence

I CALL CLPUTM (TEXT) I

Input argument

TEXT TEXT is a character string containing either a message line (not to exceed
80 characters) or the *EOM or *EOM/I message terminator characters.
Use of the *EOM/I will cause CLIP to insert the message immediately
into the cornniand strearn. Otherwise, it will simply return and a sub-
sequent call to CLREAD or CLGET will cause the message file to be
added to the command source stream.

REMARK 2.10

The end-of-message mark mus t be in columns 1-4 or else it will be ignored.

REMARK 2.11

If the end-of-message mark is :*EOM/I, t h e datal ine collector is flushed.

EXAMPLE 2.3

Consider

CALL CLPUTM ('*PROCEDURE CHANGE.STEP (H=0.04)')
CALL CLPUTN (' SET INTEGRATION STEP TO [HI '
CALL CLPUTM ('*EHD '1
CALL CLPUTM ('*EOM/I ' >

These four calls siibmit, R three-lint. messagp that, define a command proredlire called CHANGE .STEP.

2-11

Section 2: CONTROL ENTRY POINTS

s2.6 SEND ONE-LINE MESSAGE AND WAIT: CLPUTW

This entry point operates like CLPUT, t.xcept that the message is not processed immediately
by (;LIP, but, by t,he next CLREAD or CLCET call. This is the recommended procedure if the
rriessage iricludcs otic or rnorc user conimitids, as explained in $2.2.

Calling sequence

I CALL CLPUTW (TEXT) I

Input argument

TEXT A character string b1ia.t contains the text of the message. Its length
should not exceed 480 characters.

EXAMPLE 2.4

Consider

CALL CLPUTW (* set omega=i.45 ; +show macros ; set damping=.07 *)

On return from CLPUTW thr iritlicated text is storcd i i i Ihe dateline collector, but has not been
processed. sup post^ that two CLREAD calls follow. The first CLREAD call “captures” the SEI OMEGA
corrirriand. The secoiid call processes the SHOW directive and “captures” the SET DAMPING com-
mand.

If this call had been subrnit,ted via CLPUT followed by CLREADs, the first ordinary command
would have been lost.

2- 12

$2.7 READ NEXT USER COMMAND: CLREAD

52.7 READ NEXT USER COMMAND: CLREAD

You request that the next user cotnrriand be read and decoded by CLIP by calling the
entry point CLREAD. This is by far the most important control entry point and the only
one most Processors should use.

Calling sequence
~~~ [ CALL CLREAD (PROMPT, SPLASH) J 

Input arguments 

PROMPT Optional prompt text. A character string that may contain up to 132 
characters. ?‘he second through last characters will be printed as a 
prompting message if (a) running in conversational interactive mode 
and (b) CLIP expects the next command from the terminal. The extent 
of the prompt message is determined by its passed length, except that  
multiple trailing blanks, if any, are reduced to one. 
The first character of PROMPT controls the spacing before the prompt 
line as follows: 

1 One blank line. 

2 Two blank lines. 
- Page skip. 

Any other: no skip. T h i s  character is not printed. 
A double ampersand (&&) may be used to generate a carriage re- 
tiirn/line fwd (: new line) in long prompts. This symbol is not printed. 
l‘he character that follows && is not considered a space control. 
This argument is ignored in the cases noted in Remark 2.12 below. 

SPLASH Optional “splasli lirie” to bc displayed before the prompt if the “verbose” 
mode has been enabled througli a SET ECHO directive. On the VAX, this 
string rnay contain any number of characters; on other computers it, is 
lirriitcd to 480 charartws.  7’110 lengtsh of I h e  SPLASH line is t,hat of 
the passed length or that of the last nonblank character, whichever is 
s m a1 ler . 
The first, character of SPLASH is a line spacer that functions as described 
above for PROMPT. Double ampersands may be used to force line feeds. 
This argument is ignored in  the cases noted in Remark 2.13 below. 

2-13 



Section 2: CONTROL ENTRY POINTS 

REMARK 2.12 

The PROMPT argument i s  ignored in the following cases: (a) batch mode; (b) command source is 
not the user’s terminal, or (c) the length of tlie PROMPT string is only one character. 

REMARK 2.13 

The SPLASH argument is ignored in the following cases: (a) “verbose” mode is off, or (b) any of 
the conditions listed in the above Remark applies. 

REMARK 2.14 

Entry point CLNEXT is a variant of CLREAD. It has the calling sequence 

I CALL CLlJEXT (PROMPT, SPLASH, ITEMS) I 
where ITEMS is an oiitput integer argument t.hat receives the number of items in the last parsed 
command. This entry point, will be retained i n  future CLIP versions. 

EXAMPLE 2.5 

Consider the call 

CALL CLREAD ( ’ Next command: ’ , ’ * 

This call specifies 

Next command: 

as the prompt line (there will be a blank after the colon). The splash line is empty. 

EXAMPLE 2.6 

Consider now the call 

CALL CLREAD ( ’ Hext command: ’ , 
$ ’ Commands : BEGIN, RUN, CONTINUE, STOP ’ ) 

This call specifics the sarne protnpt as in the previous example, but now it includes a aplashline 
that, has a short coiririiand menu. 

2 -14 



3 
t 

Standard 
Command 

Format 

\ 

3- -1 



Section 3: STANDARD COMMAND FORMAT 

53.1 1NTRODIJC:TION 

‘I’hc present Sect ion repoats n i r i c l i  of t I i c  inatt)rial prcwmtcd i n  5 3 . 1  of Volume I in greater 
dvta i l .  A s  a I’rowssor c l t ~ v t ~ l o p ( ~ r ,  p i i  ;it  ( 1  c~xp(~cI,cd to ui i ( l (wt , i ind  Ihc prcv-isc! meaning of 
tchrrris sucli as kcyn.ortls, qiialilic’rs ;ind iteiii lists i i i  ordor t.o h a  able to dfcctively use the 
cornniand-processirlg entry points described iii  Sections 4 to 8 of this Volume. 

The descript,ioii that follows covcrs tl i t?  so-called standard CLAMP format. It was 
noted in $3.2 of Volume 1 that this is a subset of the total number of command formats 
that C L I P  can process. R u t  many of the entry points described in following Sections are 
tuned to this format. 

REMARK 3.1 

If you decide for a command format other than the standard CLAMP format, you must be 
prepared to take one of the following approaches, depending on the degree of deviation from the 
standard. 

1. CLIP Item Pnrsing is Acceptable. If the was CLIP breaks up the command into items is 
acccptaI)lc to you, coinmands may be retrieved through CLREAD. Command processing may 
be done on a detailed, item-by-item basis, avoiding search and list-loading entry points. 
~ 1 , l I ’  Item Parsing i s  n o t  Ar*ceptable .  In this case you must retrieve command images through 
CLCET and do y o u r  ow11 parsing. Y o i r  i i i ay  be able to send “chunks” such ~9 itern lists back to 
CLIP via CLPUT for convenient decoding. Brit in general this approach will entail a lot more 
prograrnining work on your  part, so it should be justified only under special circumstances. 

If yoii  haw taken  a noristantiard approach7 t lie material that  follows is not particularly relevant 
and rnay be skippecl 

2. 

3---2 



§3.2 PHRASES 

53.2 PHRASES 

In the standard CLAMP format, a coinniand is always a sequence of phrases aa shown in 
the display box: 

Standard command 3 Phrase1 Phrase2 . . . Phrasek I 

A Phrase (capitalized) is one or more interrelated items that must appear in sequence. A 
Phrase can take five forms: 

Keyword 
List 
Keyword = List 
Qu a1 ifi e r 
Qualifier = List 

(There are two variants of the second and third forms, as explained in $3.5.) The following 
subsections describe keywords, qualifiers and lists. 

3-3 



Section 3: STANDARD COMMAND F O R M A T  

$3.3 KEYWORDS 

Definition 

A keyword is a character string that meets the following conditions: 

1. 

2. 

What’s the way to tell a keyword? You have to follow a process of elimination. 
In the first place, the above definition says that a keyword must be a character string. 

A numeric item cannot be a keyword. (One may type apostrophe character strings that 
look like numbers, for example ’ 1984 ’ but this is admittedly rare.) 

Next, if the alleged keyword is not the first item, look before it for prefixes or connec- 
tives. If you see a qualifier prefix (normally a slash) this is a qualifier and riot a keyword. 
If you see an equals sign, this is the first item of a list (perhaps the only item). If you see 
a comma, this is a component of a list,. 

Finally, look alter it. If you see a comiiia, this is a component of a list and not a 
keyword. 

It is not a component of a list. 

It is not a qualifier. 

Function 

Keywords a.re associated wit,Ii control functions. They are used to specify operations to be 
performed by the I’rocessor9 and to select cases within complex operations. 

Keywords should be distinguished from character string data. For example, in the 
two-phrase command 

OPEN F I L E  = 1FIPUT.DAT 

OPEII and FILE are keywords, but INPUT. DAT is a file name and not a keyword. An easy way 
to distinguish the control oersus data functions is to ask oneself has the name 1NPUT.DAT 
a special significance to the Processor? 

There is an ambiguous interpretation case discussed in $3.5. 

Thc Action Vwh 

In  the standard CI,AMP format, if the first cortirnand item is a character string, it is 
usually a keyword called the action verb. ‘I’hc action verb defines what the command is 
supposed to do; $3.1 of Volume 1 contairis rriariy examples. 

Note that this is recommended practice and not a mandatory rule. There is an 
important class of commands, called data conztnatzds, which consist of a list only. 

3-4 



$3.4 QUALIFIERS 

$3.4 QUALIFIERS 

Definition 
t Qualifiers are character strings (with the exception noted in the Remark below) preceded 

by a qualifier prefix. The default prefix is the slash, although this may be changed through 
a SET CHAR directive as explained in Volume 11. We shall assume the slash for all examples, 
as in 

OPEN /MEW 

Here NEW is a qualifier. Note that the prefix is n,ot considered part of the qualifier string. 
When the Processor retrieves this qualifier from CLIP, it gets NEW and not /NEW. (Doing 
the latter would lead to character-matching programming problems should be the prefix 
be changed by the user to, for example, a dollar sign.) 

R E M A R K  3.2 

Apostrophe strings should not be specified as qualifiers. For example: 

PRIllT TABLE = RRR /‘Format’=E 

should be avoided; say /FORMAT=E instead. The item-parsing logic of CLIP gets quite confused 
when a construction of this type is encountered. 

Function 

As explained in 53.1 of Volume 1, the basic function of the qualifier is to implement options. 
It follows that qualifiers may always be omitted from the command, and that a default 
i n  terpretatiori must exist. 

Qualifiers may be followed by a qualifier list that contains one or more items. The 
list milst be preceded by an equals sign that “attaches” it to the qualifier; this sign may 
not be omitted. 

3-5 



Sectlon 3: STANDARD COMMAND F O R M A T  

$3.6 ITEM LISTS 

An Expanded Dcfmitioii 

Section 9 of Volume I defined item lists as sequence of items of the same type (numeric 
and character strings) separated by commas. Now the term “item sequence” denotes two 
or more items, as opposed to an individual item. Rut, for command processing tasks, it is 
usually convenient to view an individual item as a one-item list. 

REMARK 3.3 

From this expanded interpretation it follows that a numeric i t em is either a list or a component of 
a list.  

In forming a Phrase, an item list may follow a keyword, follow a qualifier, or stand by 
itself. If a list follows a qualifier, it niust be preceded by an equals sign. In the other cases, 
the equals sign is optional but never hurts. In fact, it helps to eliminate the ambiguous 
interpretation discussed below. These Phrase composition rules deserve a display that 
expands upon that of 93.2: 

List 
= List 
K e y w o r d  = List 
K e y w o r d  List 
Qiiali’er = List 

Function 

Lists supply data to the Processor. Although the Processor actions may be influenced 
by the values of the data, the influence is not so direct and unequivocal as in the case of 
keywords and qualifiers. 

An Ambiguous Case 

There is an anibiguoiis case in which a character string may be interpreted as a keyword 
or as a one-item list. Example: 

OPEN INPUT. DAT 

It is clear that OPEI.1, which is t>he actio11 verb, is a keyword. Dut what is INPUT.DAT? 
From the likely interpretation of the comtriand “open fjlenanie”, it has to be a data  value; 
therefore it is a one-itern list. But it could also be interpreted legally as a keyword according 
to the rules of $3.3. 

3-6 



$3.5 ITEM LISTS 

Placing an equals sign between the two items would make the interpretation unambiguous: 

OPEN = 1MPUT.DAT 

But the rules of $3.4 state that the sign is optional, so the “equals-less” form cannot be 
ruled out. 

In practice this ambiguity has  not  lead to significant problems in command interpre- 
tation. Therefore, the standard CLAMP format gives Processor developers a choice. 

If you hate syntactical ambiguities, you may want to require users to put equals signs 
before character lists (or all lists, for that matter). But if you are not a particularly 
fastidious person and are aware that users hate typing equal signs (they are hard to find 
on keyboards) you may decide to accept the ambiguity in simple commands such as the 
above example. (If the ambiguity can occur in a complex command, you should redesign 
it.) 

3-7 



Sectlon 3: STANDARD COMMAND FORMAT 

nrIs PAGE LEFT BLANK INTENTIONALLY. 

3 -8 



4 
? 

Item Loading 
Overview 

1 

4--1 



Sectlon 4: ITEM LOADING OVERVIEW 

$4.1 THE DECODED ITEM TABLE 

When CLJP interprets a n  ordinary command, it stores the result of the interpretation in a 
Decoded ltem Ihble ,  also called Parsed Itern Table. This table was mentioned in in Remark 
6.2 of Volume I to help explain some advanced concepts, but it is of limited interest to 
users. In the present Volume, the table is central to the exposition. 

The best way to describe the configuration of the Decoded Item Table is to go through 
an example. Consider the eight-item command 

SOLVE FOR X=(1/3) /RANGE= 25,86 /SCALE 

Upon interpreting this command, the Decoded Item Table contains the following data: 

Index 
1 
2 
3 
4 
5 
6 
7 
8 

Type 
Character 
Character 
Character 
Floating 
Character 
Integer 
Integer 
Character 

Prefix Value Separator 
SOLVE 
FOR 
X 
0.33333333 

/ RANGE - 
26 # 

86 

- - 

- 

/ SCALE 

The item index is not stored, but serves to identify the position in the table. Attributes 
type and value are self-explanatory. The table also “remembers” two characters called 
prefix and separator, which are not part of the value itself. 

Only certain special characters may legally fill the role of prefixes and separators; 
details to this respect have been given in Section 6 of Volume I. If none of these special 
characters appears, a blank value is stored. 

REMARK 4.1 

The Decoded Item Table may be displayed through the SHOW DEC directive. The display format 
is not exactly that shown above (for example, the value appears last to facilitate showing long 
character strings), brit it, c o n h i n s  the same inform r?. t‘ ion. 

The Decoded Item Table is accessible t.0 the Processor through the entry points described 
in Sections 5 to 8. The most important function of these entry points is item loading, which 
is the transfer of information from the table into the Processor work area. For example, 
the Processor may begin by testing the action verb, and so the keyword SOLVE must be 
retrieved. The contents of the table cannot tw modified by the Processor. 

4-2 



54.2 THE LOAD POINTER 

$4.2 THE LOAD POINTER 

Many of the Processor-CLIP interface points are of the “item loading” type. Their chief 
function is to facilitate transfer of information from the Decoded Item Table into the 
Processor work area for subsequent interpretation by the Processor executive. An item 
is said to have been loaded when it has been accessed by an item-loading function or 
subroutine and its value has been copied to the specified destination. 

To systematize the transfer process, CLIP maintains an internal variable called the 
load pointer, which is often denoted by the FORTRAN-like symbol, ILOAD. This is an 
integer that has the index of the last item loaded, the index of a keyword or qualifier 
matched by a “search” operation, or the value communicated through a “set pointer” 
operation; whichever occurred last. 

There is a closely related pointer called the ttezt item to load ,  which is often denoted 
by INEXT. Its value is obtained by adding 1 to ILOAD. 

The number of items in the Decoded Item Table is denoted by ITEMS; in the example 
of $4.1,  ITEMS = 8. The load pointer ILOAD may range from 0 to ITEMS, and the next- 
item-to-load pointer INEXT from 1 to ITEMS+l. 

The basic itern-loading principle is: select b y  pointing, then moue. More precisely, if 
you want to load the item that follows keyword X, you have to make ILOAD point to  X, 
which in turn makes INEXT point to whatever follows X. This manipulation can be done in 
several ways as is summarized in 54.3. 

4--3 



Section 4: ITEM LOADING OVERVIEW 

84.3 MANIPULATING THE LOAD POINTER 

On return from a “get next command” reference to CLREAD or CLGET, ILOAD and INEXT 
initially have the values zero and one, respectively. From then on, the load pointer moves 
in response to searching, item loading and setting actions, as described next. 

Searching 

The occurrence of specific keywords or qualifiers in the Decoded Item Table may be tested 
through search operations requested via functions ICLSEK or ICLSEQ, which are described 
in Section 5. ICLSEK is used for keywords and ICLSEQ for qualifiers. If a match takes place, 
the load pointer is set to the index of t,he matched item. To illustrate, consider again the 
sample command: 

SOLVE FOR X=(1/3) /RANGE= 25.86 /SCALE 

If a search is made for keyword X, the load pointer is set to 3 and INEXT becomes 4 so it 
points to (1/3). This happens regardless of previous operations. If no match occurs, the 
values do not change. 

Loading an Individual Item 

The value of an individual item (an isolated item or a list component) may be retrieved 
through the FORI’RAN-callable functions named zCLVAL, which are described in Section 
6. The single function argument is tlie itern index with a value of zero defaulting to ILOAD. 
If the index is in range, upon return ILOAD points to tlie retrieved item and INEXT to the 
next one. 

Loading Lists 

Item lists may be processed all at once by calling subroutines named CLVALz, which are 
described in Section 7. Loading always begins a t  the current INEXT arid proceeds until a 
termination condition is reached. On return, ILOAD points to the last item transferred (if 
any 1 * 
Direct Setting 

The load pointer m a y  he set to a specific valiie hy calling entry point, CLSLOP, which is 
described in 510.3. 

REMARK 4.2 

The similarity of item loading and  processing of dirrct,-access files may be helpful to developers 
familiar with the lat,ter. A zero ILOAD corresponds t,o a “file rewound” condition, a keyword search 
corresponds to a seek-key operation, and so on. 

4--4 



5 
Searching 

5-1 



Section 5: SEARCHING 

g5.1 SEARCHING: ICLSEK and ICLSEQ 

This Section describes two entry points for searching the Decoded Item Table: ICLSEK 
for keywords and ICLSEQ for qualifiers. Both functions take two arguments. The first 
argument specifies the starting point for the search while the second one specifies the 
character string to be matched. Jf  a match occurs the function returns the index of the 
matched item while I L O A D  is internally set to point to it. 

But what is the meaning of “to match”? The case of character-by-character equality 
is of course obvious: ICLSEK(1, ‘COPY ‘1 matches keyword COPY. But there is more to the 
subject than this. 

Ups tairs/Downs tairs 

First we examine the question of uppercase US. lowercase. Suppose the command you have 
typed has the keyword 

COPY 

Does ICLSEK(1, ‘COPY ’1 match this keyword? 

Yes. Remember that CLIP converts all lowercase input to uppercase except for apos- 
trophe strings, and that apostrophe strings should never be used for keywords or qualifiers; 
only for character data such as plot legends and the like. 

Abbreviating Keywords 

Many Processors do not insist, on complete matching of the command keywords and qual- 
ifiers shown in the Processor Manuals or its help file. Instead, they permit abbreviations. 
For example, let us suppose that the Processor Manual describes a command as 

PRINT ELEMENTS 

brit that, keyword PRINT may  tw ahl~rc~vialetl t,o PRI (hut not P or PR) while keyword 
ELEMENTS may be abbreviated to E. So i n  fact a user can i n  fact type only: 

PRI E 

Roots and Extensions 

Abbreviations such as the ones shown above are technically known as keyword roots. The 
additional characters shown in the command description are called the extension. The 
extension is shown primarily for mnemonic purposes: PRINT ELEMENTS is more easily 
remembered and understood than PRI E. 

5--2 



$5.1 SEARCHING: ICLSEK and ICLSEQ 

How are roots and extensions specified when invoking the search functions? You should 
separate the two parts by a caret mark; for example: 

ICLSEK(l,’PRI^NT’) 
ICLSEK (1. ’E-LEMENTS ’ 

tells CLIP to search for keywords PRINT and ELEMENTS, whose roots are PRI and E, respec- 
tively. Note that this convention precludes the use of the caret in keywords. 

Another way of doing this is to to switch to lowercase for the extension, as in 

ICLSEK(1,’PRInt’) 
ICLSEK(1,’Elements’) 

This notation is more readable, but has two drawbacks, one minor, one major: 

1. It cannot be used on the (admittedly few) computers that do not recognize lowercase 
letters. 
It may lead to ambiguity if the keyword contains nonletters. For example, if you say 2. 

ICLSEK (0, ‘X-value ’ 

it is impossible to tell whether the dash belongs to the root or not. 

Uiiiqueness and Coiisistency 

A basic requirement is that keyword roots should be unambiguous. For example, let us 
say that there are two coniniands whose action verbs are PRINT and PROCEED. Then the 
abbreviations PRI and PRO are acceptable, but PR is ambiguous. The Processor developer 
is responsible for specifying unambiguous roots. Note that as more commands are added 
during the lifetime of a Processor, certain roots may have to be expanded. 

A more subtle question arises when the user types “beyond” the root. For example, 
PRINT ELE or PRINT ELEMS. 

One course of action would be to accept, a keyword as long as it matches the root. 
‘This can be acliicvcd by simply omitting thc cxtcxnsion w’hcn ynri call t,hc search functions, 
as in 

ICLSEK(0, ’PRI’) 
ICLSEK(2, ‘E’) 

This is straightforward, but may stirpris~ and confuse some users. A more rational way is 
implemented in the search functions: accept a match if the excess characters agree with 
the extension and to disallow a match if they do not. As an illustration, any of 

EL ELEM ELEMENT 

5-3 



Sectlon 5: SEARCHING 

match ELEMENTS, but ELEVATE or ELEMENTAL do not. 
In practico Processor chwlopcm often follow R middle course: the tests against the 

extension are lirriitetl to two o r  three cliaracters beyond the root. For example, if the 
developer writes the search reference as 

ICLSEK (1 ,  'ELEM')  

then anything that  the user types beyond ELEM is ignored. 
Both ICLSEK and ICLSEQ are trained to apply this approach if an extension appears 

in the argument. For tests-within-thc-processor, the universal string-matching routine 
CMATCH is available. 

Newer Entry Points 

In addition to ICLSEK and ICLSEQ, two more search functions have been added in the 
present version of this document,: ICLKYP and ICLQLP.  These also search for given keywords 
or qualifiers, but return their position count rather than item index. These entry points 
are designed to work in conjunction with CCLKEY, CCLQUL, ICLNKY and ICLNQL, which are 
described in 58. 

5--4 



55.2 SEARCH FOR KEYWORD: ICLSEK 

$6.2 SEARCH FOR KEYWORD: ICLSEK 

Entry point ICLSEK, which is referenced as a integer function, scans the Decoded Item 
Table for the first occurrence of a keyword that matches its argument. The search begins 
at the item index specified as argument; but if this argument is zero, the “next item to  
load” position is assumed. If a match occurs, the function returns a nonzero value and 
the load pointer is set to the matched item index. If no match occurs the function returns 
zero and the load pointer is unchanged. 

ICLSEK does not test its argument against, qualifiers, iterns preceded by a comma or 
equals sign, items followed by a comma, or numeric items. None of these fits the definition 
of “ordinary keyword” given in $3.3. 

Calling Sequence 

M = ICLSEK (I, KEY) 

REMARK 5.1  

An explicit function reference is rare, however; more often than not ICLSEK is tested within an IF 
statement. 

Input Argumenfs 

I 

KEY 

Function Return 

ICLSEK 

Procedure 

If I > 0,  begin search at  the Z t h  item. 

If zero, begin at  IMEXT. 

A character string that contains the keyword to be matched left justified. 
The string may also specify tlie keyword root followed by its extension 
as explained in 55.1. 

If a match occurs, ICLSEK returns the index of the matched item and 
internally scts ILOAD to point to it. 

If no match is detected, tlie function returns zero and ILOAD is not 
ai tered. 

Initialize function value to zero. Examine entries in the Decoded Item Table starting at 
I>O, or INEXT if I=O. Numeric items, qualifiers (items preceded by a qualifier prefix) and 
items preceded by an equals sign are skipped. A compare test of the argument and the 
candidate keyword is performed. If match occurs, set ILOAD to its index and return; else 
continue until the end of command is reached. 

5-5 



Section 5: SEARCHING 

EXAMPLE 5.1 

Assume that the last, loaded command is 

LOAD COORDINATES X = 1.2 Y = (2/3) Z = - 7 . 5  

and that INEXT is one. Then 

ICLSEK ( 0 ,  ' X ' )  
ICLSEK (0, 'Z*-VALUE') 
ICLSEK (0, ' COOR-D ' 
ICLSEK (I, 'LOAD') 
ICLSEK ( 2 ,  'LOAD') 
ICLSEK ( 0 ,  ' LOADER' 
ICLSEK (0, 'LO-CK') 
ICLSEK (0, 'COOR^DIMATE' 

EXAMPLE 5.2 

This is a trickier example: 

returns 3 
returns 7 
returns 2 
returns 1 
returns 0 
returns 0 
returns 0 
returns 2 

FILE /FILE=FILE FILE = FILE 

with IIlEXT = 2. W h a t  does ICLSEK(0, 'FI-LE') return? Answer: 4 (why?). 

5-  -6 



55.3 SEARCH FOR QUALIFIER: ICLSEQ 

55.3 SEARCH FOR QUALIFIER: ICLSEQ 

Entry point ICLSEq, which is referenced as a integer function, scans the Decoded Item 
Table for the first occurrence of a qualifier that matches its argument. The search begins 
a t  the item index specified as argument; but if this argument is zero, the “next item to 
load” position is assumed. If a match occurs, the function returns “next item to load” 
position. If a match is made, the function returns a nonzero value and the load pointer is 
set to the matched item index. If no match occurs the function returns zero and the load 
pointer is unchanged. 

Calling Sequence 

I M = ICLSEq ( I ,  KEY) I 

REMARK 5.2 

As with ICLSEK, explicit function references are rare. More often than not ICLSEq is tested within 
an IF statement. 

Input Arguments 

I If I > 0, begin search at  the z t h  item. 

If zero, begin at INEXT. 

KEY A character array that contains the keyword to be matched left justi- 
f i t d .  It, may also specify the keyword root followed by its extension as 
explained in 55.1. 

Function Returti 

ICLSEQ If a match occurs ICLSEQ returns the index of the matched item, and 
also internally sets ILOAD to it. 
If no match is detected the function returns zero and I L O A D  is not al- 
tered. 

Procedure 

Initialize function return to zero. Examine the Decoded Item Table starting at I>O, or 
INEXT if 1-0. Numeric items and items not preceded by a qualifier prefix are skipped. A 
compare test of the argument and the candidate keyword is performed. If match occurs, 
set ILOAD to its index arid return: else rontinuc i i i i t i l  the end of command is reached. 

EXAMPLE 5.3 

Assurne that the last loaded command is 

OPEN /ROLD 3, [REAGAIJI BUDGET. DEF /LIMIT=INFIMITE 

5 - 7  



Section 5: SEARCHING 

and that INEXT is 1. Then 

ICLSEq (0, 'R') returns 2 
ICLSEq (0, 'LIM') returns 5 
ICLSEq (0, 'L'IMIT') returns 5 
ICLSEq ( 0 ,  'LIMITS') returns 0 
ICLSEQ (0, 'BUDGET') returns 0 

5-8 



55.4 SEARCH FOR KEYWORD POSITIOhJ: ICLKYP 

56.4 SEARCH FOR KEYWORD POSITION: ICLKYP 

Integer function ICLKYP receives a keyword value as argument, and returns the keyword 
position if that keyword occurs i r i  the command. 

Calling Sequence 

IK = ICLKYP (KEY) 

Input A rgu nie nt s 

KEY A character string that contains the keyword to be matched left justified. 
The string riiay also specify the keyword root followed by its extension 
as explained in $5.1. 

Function Ret u r 12 

ICLKYP Keyword position (not  to hc confused with the item index) if the key- 
word is found, otherwise it is zero. If a match occurs, pointer ILOAD is 
set to the keyword index. 

Procedure 

The Decoded Itern Table is scanned from beginning to end. For each item classified as 
a keyword, a comparison test is performed against the argument value. If the match 
succeeds, the keyword position is returned. If no match is detected after scanning the 
entire table, a zero is returned. 

EXAMPLE 5.4 

Assiirne that the last loaded conirnand is 

SOLVE FOR X =  (1/3) /RANGE= 25,86 /SCALE STORE 

Then ICLKYP( 'FOR') returns 2, ICLKYP( 'ST'ORE') re turns  4, but ICLKYP( 'ZZZZ') returns zero. 



Section 5: SEARCHING 

§6.5 SEARCH FOR QUALIFIER POSITION: ICLQLP 

Integer function ICLqLP receives a qualifier value as arghment, and returns the qualifier 
position if the qualifier occurs in the command. 

Calling Sequence 

I K  = ICLQLP ( K E Y )  

Input Arguments 

K E Y  A character string that contains the qualifier to be matched left justified. 
The string [nay also specify the qualifier root followed by its extension 
as explained in $5.1. 

Function Return 

IcLqLP The qualifier position (not to be confused with the item index) if the 
qualifier is found, otherwise it is zero. If a match occurs, the pointer 
I L O A D  is set to the itern index. 

Procedure 

The Ilecoded Itern Table is scanned from beginning to end. For each item classified as a 
qualifier, a comparison test is performed against the argument value. If the match succeeds, 
the qualifier position is returned. If no match is detected after scanning the entire table, 
a zero is returned. 

EXAMPLE 5.5 

Assume that the last loaded command is 

SOLVE FOR X=(1/3) /RANGE= 26,86 /SCALE STORE 

'I'hen ICLqLP( 'RAIIGE')  
zero. 

returns 1, ICLqLP( 'SC-ALE' ) returns 2, but ICLqLP('V0ID') returns 

5-10 



6 
Loading 

Individual Items 

6-1 



Sectlon 6: LOADING INDIVIDUAL ITEMS 

56.1 GENERAL DESCRIPTION 

The value of individual iterris identified by an item index may be retrieved through function 
eritry points named zCLVAL. The first letter of the furictiori name identifies the data type 
of the receiving variable in the calling program. Presently that letter may be C, F, D, I, N, 
X and Z, for character, single float, double float, integer, next integer, single complex and 
double complex data types, respectively. 

The only fgnction argument is the item index; if a value of zero is specified, INEXT is 
assumed. 

REMARK 6.1 

Some of these functions are among the most venerable pieces of code in CLIP and its ancestor 
LODREC. In fact, the first ICLVAL and FCLVAL were coded in 1969 on the CDC 6600, under 
the names IVALUE and and FVALUE, respectively. Of course there was no character data type in 
FORTRAN at that time; to get keywords there was an integer function HVALUE that returned a 
Hollerith value. 

6- -2 



56.2 G E T  INDIVIDUAL CHARACTER VALUE: CCLVAL 

56.2 GET INDIVIDUAL CHARACTER VALUE: CCLVAL 

Entry point CCLVAL, which is invoked as a character function, returns the character value 
of a decoded CLIP item identified by its index. 

Calling Sequence 

F E R * ( N )  CS. CCLVAL I 
. . .  I CS = CCLVAL ( I )  

Input Arguments 

I If I > 0, item index. 

If I = 0, CCLVAL assumes that I = I L O A D + l  = INEXT, ;.e., the “next 
item to load.” 

Function Return 

CCLVAL If the I-th item is of character string type and is of length M 5 N, CCLVAL 
returns its value in the first M characters, and the remaining N-M ones 
are blankfilled. If I1 < M, the returned value is truncated to the first IS 
c 11 ar ac t ers . 
If the I-th item is of numeric type, or if I exceeds the total number of 
items, CCLVAL returns a blank. 

Procedure 

Check argument I; if zero, replace as indicated; set frinction value as indicated. Before 
returning, if (1 < I < ITEMS) set the load pointer ILOAD to I ,  and adjust INEXT accordingly. 

EXAMPLE 6.1 

If the last user conirriand starts with a keyword w h s e  first four characters are SOLV, call subroutine 
SOLVER 

CHARACTER+4 CCLVAL 

I F  (CCLVAL(1) .Eq. ’SOLV’) THEM 

END I F  
CALL SOLVER 

6.- -3 



Sectlon 6: LOADING INDIVIDUAL ITEMS 

$6.3 GET INDIVIDUAL DOUBLE FLOATING VALUE: DCLVAL 

Entry point DCLVAL, which is invoked as a doiihle-precision function, returns the double- 
precision floating-point value of a numeric CLIP item identified by its index. 

I Calling Sequence 

DOUBLE PRECISION D, DCLVAL nl 
Input A rg unz e nt s 

I If I > 0, item index. 
If I = 0, DCLVAL assumes that I = ILOAD+l = INEXT, i .e. ,  the “next 
item to load.” 

Function Return 

DCLVAL If the I-th itern is of numeric type DCLVAL returns its value rn a double- 
precision floating-point nuniber. 
If the I - t h  item is of character type, or if I exceeds the total number of 
itenis, DCLVAL returns zero. 

Procedure 

Check argument I; if zero, replace as indicated; set function valire as indicated. Before 
returning, if 1 < I < ITEMS set tlie load pointer ILOAD to I, and adjust INEXT accordingly. 

REMARK.6.2 

An integer value is converted to a double-precision floating-point value; for example, 6 is returned 
as S.OD+O. 

EXAMPLE 6.2 

Load items 4 throiigh 8 into first 5 entries of  tho  dniihlo-precision array DD: 

DOUBLE PRECISIOIJ DD(5). DCLVAL 

DO 2000 J = 1,5 
DD(J) = DCLVAL(J+3) 

2000 CO1,ITIIJUE 

0-4 



$6.4 GET INDIVIDUAL SINGLE FLOATING VALUE: FCLVAL 

50.4 GET INDIVIDUAL SINGLE FLOATING VALUE: FCLVAL 

Entry point FCLVAL, which is invokc?tf as a real function, returns the single-precision 
floating-point value of a numeric CLIP item identified by its index. 

Calling Sequence 

I F = FCLVAL (I) I 

Input A rgu ment s 

I If I > 0, item index. 
If I = 0, FCLVAL assumes that I = ILOAD+l = INEXT, ;.e.,  the “next 
item to load.” 

Function Return 

FCLVAL If the I-th item is of numeric type FCLVAL returns its value as a single- 
precision floating-point number. 
If the I-th item is of character type, or if I exceeds the total number of 
items, FCLVAL returns zero. 

Procedure 

Check argument I; if zero, replace as iridicat,ed; set function value as indicated. Before 
returning, if 1 < I < ITEMS set the load poiliter ILOAD to I, and adjust INEXT accordingly. 

REMARK 6.3 

A n  integer value is converted to a single-precision floating-point value; for example, 6 is returned 
as 5.0. 

EXAFAPLE 6.3 

A three item keyword phrase has the following f o r m  

LIMITS - r l  r 2  

It. is drqirrd to laarl r l  nrid r.? ii1t.o irwr-prngrarIi varititdf~s XMItl rind XMAX. rrnpectively. 
following code block, which assumes that LIM is the %ot” of keyword LIMITS, does it: 

The 

IF (ICLTYP (‘LIM‘ITS’)) .NE. 0) THEN 
XMIN = FCLVAL (0) 
XMAX = FCLVAL(0) 

ENDIF 

For example, if the actual command is 

SET COORDINATE LIMITS = 1.5 2.57 

then XMIN receives 1.5 and XMAX receives 2.57. 

6-5 



Section 6: LOADING INDIVIDUAL ITEMS 

$6.5 GET INDIVIDUAL INTEGER VALUE: ICLVAL 

Entry point ICLVAL, which is invoked as an integer function, returns the integer value of 
a numeric CLIP itetri identified hy its index. 

Calling Sequence 

Input Arguments 

I If I > 0, item index. 
If I = 0, ICLVAL assumes that I = ILOAD+l = INEXT, Le., the “next 
item to load.” 

Function Return 

ICLVAL If the I- th  item is of nunieric type ICLVAL returns its integer value. 

If the I-th i t e m  is of charactcr type, or if I exceeds the total number of 
items, ICLVAL returns zero. 

Procedure 

Check argument I; if zero, repla.ce as indicated; set function value as indicated. Before 
returning, if 1 < I < ITEMS set the load point,er ILOAD to I, and adjust INEXT accordingly. 

REMARK 6.4 

A floating-point value is converted to an integer value following the usual FORTRAN 77 truncation 
procedure; for exaniple 5 . 8  is returned as 5. If you prefer rounding to the next integer, use NCLVAL 
(I6.6). 

EXAMPLE 6.4 

Load items 13 to 20 into the first 8 entries of integtir array I V  

INTEGER IV(30) 

DO 2000 J = 1.8 
IV(J) = ICLVAL(J t5)  

2000 COIJTINUE 

6- 6 



56.6 GET NEAREST INTEGER VALUE: NCLVAL 

$6.6 GET NEAREST INTEGER VALUE: NCLVAL 

Entry point NCLVAL, which is invoked as an integer function, returns the nearest integer 
value of a numeric CLIP item identified by its index. 

Calling Sequence 

I J = NCLVAL (I) 1 
Input Arguments 

I If I > 0, item index. 
If I = 0, NCLVAL assumes that I = ILOAD+l = INEXT, i.e., the “next 
item to load.” 

Function Return 

NCLVAL If the I-th item is of numeric type NCLVAL returns the value of the nearest 
integer . 
If the I-th item is of character type, or if I exceeds the total number of 
items, NCLVAL returns zero. 

Procedure 

Similar to  ICLVAL. but use the FORTRAN 77 function NINT to convert floating point to 
integer. 

EXAMPLE 6.5 

Consider the command 

COHVERT 1 . 2  4.55 

Then 

ICLVAL ( 2 )  rc turns  1 
IKLVAL ( 2 )  rrlurns 1 
ICLVAL (3 )  r r t i i r r ia  4 
ITCLVAL (3 )  re1,urns 5 

0 - 7  



Section 6: LOADING INDIVIDUAL ITEMS 

$6.7 GET SINGLE-PRECISION COMPLEX VALUE: XCLVAL 

Entry point XCLVAL, which is invoked as a complex function, returns the single-precision 
floating value of a pair of numeric CLIP item identified by index of the first one. 

Calling Sequence 

Input Arguments 

I 

COMPLEX X ,  XCLVAL 

X = XCLVAL ( I )  
. . .  

If I > 0, index of the first it,em. 

If I = 0, XCLVAL assumes that I = ILOAD+I = INEXT, ;.e., the “next 
item to load.” 

Fti nc t ion Return 

XCLVAL If both items are of numeric type XCLVAL returns their value as the real 
and imaginary parts of a sirigle-precision coniplex number. 

If an item is not of numeric value, or is out of range, the corresponding 
component is set to zero. If both items are nonnumeric or out of range, 
both compononts are set to zero. 

Proced ti re 

Check argument I; if zero, replace as indicated; set function value as indicated. Before 
returning, if 1 < I < ITEMS - 1 set the load pointer ILOAD to I + l ,  and adjust I N E X T  
according 1 y. 

REMARK 6.5 

Any integer value is converted to single-precision float.irig point as usual. 

REMARK 6.6 

A reference to XCLVAL is eqiiivalerit to tswo siirrcssivta FCLVAL calla with the first value going to the 
real part and the second going to the iniaginary p i l r t .  

EXAMPLE 6.6 

The last command i s  

S E T  DAMPIIJG C O E F F I C I E I I T  = 0.0349, ( -  1/40) 

Then the following code 



$6.7 G E T  SINGLE-PRECISION COMPLEX VALUE: XCLVAL 

COMPLEX GAMMA, XCLVAL 

GAMMA = XCLVAL (4) 
. . .  

stores the complex value (0.0345,  -0.026) into variable GAMMA. (The comma after 0.0346 is not 
strictly necessary, but cannot hurt.) On exit, ILOAD is 5. 



Sectlon 6: LOADING INDIVIDUAL ITEMS 

$0.8 GET INDIVIDUAL DOIJBLE-PRECISION COMPLEX VALUE: ZCLVAL 

Entry point ZCLVAL, which is invoked as a double complex function, returns the double- 
precision complex value defined by a pair of numeric CLIP items identified by the index 
of the first one. 

Calling Sequence 

DOUBLE PRECISIOIJ COMPLEX Z ,  ZCLVAL 

(Type declaration may be machine-dependent; see Remark below). 

Input A rg una e n t s 

I If I > 0, index of first item in pair. 
If I = 0, ZCLVAL assumes that I = ILOAD+l = INEXT, ke. ,  the "next 
item to load." 

Function Return 

ZCLVAL If both items are of numeric t>ype ZCLVAL returns their value aa a double- 
precision complex number. 
If one of the itetns is nonniiiiieric or is outside the range, zero is returned 
for that component. If both items are nonnumeric or out of range, both 
components are set, to zero. 

Procedure 

Check argument I; if zero, replace as indicated; set function value as indicated. Before 
returning, if 1 < I < ITEMS set the load pointer I L O A D  to I+1, and adjust INEXT accordingly. 

REMARK 6.7 

This data type i.q not part, of standard FORTRAN 77 and sn it, may not be provided by some 
compilers. For such niachines this caiit,ry point is rindcfind. Evcn if provided, the syntax for 
declaring it may vary. On byte-oriented rtiachines, it's usually COMPLEX* 16. 

REMARK 6.8 

Integer values, if any. are corivert.ed to  dou ble-precision floating-point values in the usual way. 

REMARK 6.9 

The same results may be obtained by two successive calls to DCLVAL with the first value going to 
the real part and the second value going to the irtiaginary part. 

6-10 



7 
Loading 

Item Lists 

7-1 



Section 7: LOADING ITEM L I S T S  

$7.1 GENERAL DESCRIPTION 

To load an item list with one call you use entry points named CLVALs, where the last letter 
identifies the data type of the array that will receive the values: C for character, D for 
double-precision, F for single-precision floating, I for integer, and N for nearest integer. 
Entry points for loading complex arrays are not presently provided, but may be added in 
the future if there is suflicient demand. 

Item-list processing occurs less frequently than individual item processing. Thus, Pro- 
cessor developers usiially learn the entry points of Section 6 first. An  easy way to remember 
the names of list-loading entry points is to take the first letter of the corresponding function 
entry and append it to what’s left; for example, ICLVAL becomes CLVALI. 

R E M A R K  7.1 

The old (1979 vintage) list-loading erit.ry points were named CLOADz. These are still supplied but 
should be regarded as obsolete and replaced by CLVALz in new software. The CLVALz entry points 
are designed to work efficiently in conjunction with processing of lists after qualifiers and allow 
loading of comma-less lists. 

7- 2 



$7.2 LOAD ITEM LIST: CLVALs 

57.2 LOAD ITEM LIST: CLVALz 

There are four list-loading entry points of the form CLVALz. The last letter x is C, D, F, I 
or N and designates the data type of the receiving array. 

Loading starts at  the “next item to load” position and is incremented on exit by the 
number of values loaded. The loading process terminates when one of the following exit 
conditions holds true: 

1. The list terminates. 

2. 

3. 

The end of the Decoded Item Table is reached. 
A maximum number of values (specified as argument) is reached. 

Calling Sequence 

I CALL CLVALx (OPTS, M, A ,  N) I 

Input A rgurnents 

OPTS A character array containing list-interpretation option letters. The fol- 
lowing letters are presently meaningful. 
B: Accept blanks and commas as item list connectors. If omitted, only 
commas are considered as connectors and a blanks-only separator is 
interpreted as a list terminator. 
E: Load list only if first item is preceded by an equals sign. This option 
is mandatory to load qualifier lists following a reference to ICLSEQ. If E 
is specified and no equals sign is found, nothing is loaded and argument 
M returns zero. 
The default OPTS = ’ * is appropriate for non-qualified lists; equal signs 
are ignored arid CornIiias are required connectives. 

M The absolute value of M is the maximum number of values that may be 
loaded into A.  (This is usually the array dimension.) 
If M is  ncgativc, a r ray  A is  inifiali7.cd on cntrv to the list-load subroutine. 
Initialization Iiiearis blaiikfilliiig if A is of type character, or zerofilling 
otherwise. 

Output Arguments 

A Array that will receive the item values in the first N locations. The 
data type of A should correlate with the last entry-point name letter as 
follows: 

z = C, if A is character. 
5 = D, if A is double-precision floating. 

7- 3 



Sectlon 7: LOADING I T E M  LISTS 

z -z F, if A is single-precision floating. 
r - I or  N, i f  A is iritegcv. 

N Number of values loaded inljo A .  May be zero. 

Desc rtption 

On entry, initialize array A if M is negative. Clear N. If option letter E appears, exit if no 
equals sign precedes the first list item. Load list items until one of the exit conditions 
listed above is verified. As each item is loaded, increment N and ILOAD by one. 

REMARK 7.2 

To load K single-precision complex values, set, M = 2*K (or M = -2*K if you want initialization), 
and call CLVALF; the number of complex items loaded should be N/2. For double-precision complex 
do the same with CLVALD. This should work as long as the FORTRAN compiler (a) does not check 
data  types across subroutine interfaces, and (b) stores real and imaginary part in consecutive 
locat ions. 

REMARK 7.3 

For loading characters CLVALC uses the passed length of the entries of A. 

EXAMPLE 7.1 

Assume that the last loaded command has been 

SELECT FREEDOMS = TX, TY, TZ 

and that the receiving character array is IDOF(6)*4. To load the list following keyword FREEDOMS 
into IDOF, one may use 

IF (ICLSEK(’FREE’1 .NE. 0) CALL CLVALC ( ’  ’ ,  6 ,  IDOF, N) 

This set.s IDOF(1) = ’ T X ’ ,  IDOF(2) = ‘TY’, IDOF(3) = ’TZ’, and N = 3. The last three entries 
of IDOF are not touched; if you want them blankfilled, set the second argument of CLVALC to  -6. 

EXAMPLE 7.2 

The current command contains only a list of eight, floating point numbers not separated by commas. 

3.4 -4.53 0.23 (5/3) -8.34 7.1 0.67 (-2/7) 

Allowing commas to be omitted is a bad prograniriiing pract,ice, but it may happen (remember 
Ben Franklin’s “experience is a dear school, but, fools will learn a t  no other”). These values are 
to he loaded into a double-precision array tlimensionrd DD(241, which is to be cleared on entry t o  
CLVALD: 

CALL CLSLOP (0) 
CALL CLVALD (’B’, -24, DD, FJ) 

The CLSLOP call sets the load pointer ILOAD to zero so that list loading will start  with the first 
item; this is not required if the command has just.  been retrieved v ia  CLREAD, but it can’t hurt. 
On exit, DD(1) = 3 . 4 ,  DD(2) = -4.53,. . . . and 11 = 8. 

7-4 



57.2 LOAD ITEM LIST: CLVALx 

EXAMPLE 7.3 

Assume that the current command is 

FACTOR XK /RANGE=21,629 /PDCHEK 

Load the two integers following qualifier RANGE into the 2-word integer array IRANGE: 

IF (ICLSEQ('RANCE') .NE. 0 )  CALL CLVALI ( ' q ' ,  2, IRANGE, N) 

On exit, IRANGE(1) = 21, IRAllGE(2) = 629, and I1 = 2. Note that if the comma had been omit- 
ted, as in 

FACTOR XK /RANGE=21 629 /PDCHEK 

only 21 would be loaded into IRANGE(1) and 11 = 1. Item 629 is here considered to be 'disasso- 
ciated" from the qualifier RANGE. 

7.- 5 



Section 7 :  LOADING ITEM L I S T S  

$7.3 OBSOLETE ENTRY POINTS: CLOADz 

Earlier versions of CLIP provided the 1,hree list-loading entry points CLOADz, where z is C, F or 
I .  CLOADF handles both single-and dou Me-precision floating-point lists. Loading may start  at a 
specified item riumtwr, or be defaulted to the load-pointer. 

Calling Sequence 

I CALL CLOADz ( I ,  M, K ,  A, N )  1 

Input Arguments 

I If 1 > 0, index of item a t  which load is to  start. 
If I = 0, assume that I = I L O A D + l  = INEXT. 

M Same meaning as for CLVALz. 

K For CLOADC, number of characters per item stored in each entry of A. 
For CLOADF, set K = 1 if receiving array is double precision, else K= 0. 

Ignored for CLOADI 

Output Arguments 

A Array that will receive the item values in Ihe first 11 locations. The data type 
of A should correlate with the last entry-point name letter as follows: 
z -1 C,  if A is characler. 

z = F, if A is single- or double-precision floating point. 
z = I, if A is integer. 

1.1 Number of values loaded into A.  May be zero. 

, 

7---6 



8 
Loading 

Keywords 
and Qualifiers 

8-1 

... . 0.. . ..... 1. \ . _  



Section 8: LOADING KEYWORDS AND QUALIFIERS 

§8.1 GENERAL DESCRIPTION 

Two entry points, CLOADK and CLOADQ, are provided for “collecting” keywords and qual- 
ifiers, respectively, in one pass arid storing them in a specified character array. These 
entry points differ from ICLSEK and ICLSEQ i n  that no search for specific strings is made. 
Thus, use of CLOADK and CLOADQ is appropriate when the Processor is to perform its own 
matching. 

In the present version of the document, fotir more functions have been added: CCLKEY, 
CCLQUL, ICLNKY and ICLIJQL. These entry points are intended to work in conjunction with 
ICLKYP and ICLQLP,  which are documented in $ 5 .  

8- -2 



$8.2 LOAD KEYWORDS LIST: CLOADK 

$8.2 LOAD KEYWORDS LIST: CLOADK 

Subroutine CLOADK scans the Decoded Item Table for keywords, starling at the “next item 
to load” position. At1 keywords found and tlioir indices are stored i n  a character array 
specified in the argument list. The keyword indices (in the Decoded Item Table) may be 
optionally returned in an integer array provided for this effect. 

Calling Sequence 

I CALL CLOADK (OPTS, M, A ,  L, N) 

Input Arguments 

OPTS A character array contahing uppercase option letters. Presently the 
only option implemented is 
L: Return indices of matched keywords in argument L. If L does not 
appear, the fourth argument is a dummy argument. 

M The ahsolute value of M is the maximum number of values that may be 
loaded into A. (This is usually the array dimension.) 
I f  M is negative, array A is initialized with blanks on entry to the sub- 
roil t i ne. 

Output Argutnenfs 

A Array that will receive the keywords found by CLOADK. 

L If option letster L appears in OPTS, integer array that will receive the 
indices of the keywords foiind by CLOADK. In other words, L ( i )  receives 
the Decoded Item Table index of A ( z )  for z = 1. . . . N. 
If the option is not exercised, tliis is a dummy argument and an integer 
zero may be inserted in the calling sequence. 

M Niimber of valiies loaded intn A. May be zero. 

Procedure 

On entry, initialize array A if  M is negative. (;lear 11. Scan for keywords starting at  INEXT. 
If a keyword is found, stmore it in array A arid increrrient N; if option letter L is specified, 
store the index into array L. 

REMARK 8.1 

CLOADK does not resolve the  ambiguity not,ed in 55.1 unless the first item of a character list is 
always preceded by an equals sign. 

8- -3 



Section 8: LOADING KEYWORDS AND QUALIFIERS 

EXAMPLE 8.1 

Assume that the last loaded conirnand is 

SOLVE FOR X=(1/3) /RANGE= 25,86 /SCALE 

and that ILOAD = 0. To load all keywords into character array KEYS*4(8), do 

CALL CLOADK ( '  ' ,  8,  KEYS, 0, N) 

On return from CLOADK, KEYS(1) = 'SOLV', KEYS(2) = 'FOR', KEYS(3) = ' X ' ,  and N 3. The 
remaining entries of KEYS are not altered. Note that the first keyword is truncated to four char- 
acters because that is the passed character length of KEYS. 

8--4 



58.3 LOAD QUALIFIER LIST:  CLVALQ 

4 

58.3 LOAD QUALIFIER LIST: CLVALQ 

Subroutine CLOADQ scans the Decoded Item Table for qualifiers, starting a t  the "next item 
to loatl" positioii. s torcd  i l l  a ctiarsc.tc?r array specified in the 
argument list. The qualifier indices rriay I)(% optionally requested. 

A l l  cliialificm f o i l r i d  

Calling Sequence 

I CALL CLOADQ (OPTS, M I  A ,  L, N) I 
Input Arguments 

OPTS A character array containing uppercase option letters. Presently the 
only option implemerited is 
L: Return indices of matched keywords in argument L. If L does not 
appear, the fourth argument is a dummy argument. 

M The absolute value of M is the maximum number of values that may be 
loaded into A. (This is usually the array dimension.) 
If M is negative, array A is initialized with blanks on entry to the sub- 
routine. 

Output Arguments 

A .4rray that will receive the keywords found by CLOADQ. 

L If option letter L appears in OPTS, integer array that wifi receive the 
indices of the qualifiers found by CLOADK. 111 other words, L ( i )  receives 
the Decoded Item Table index of A(i) for i = 1, ... N. If the option 
is not exercised, this is a dunmy argument and an integer zero may be 
inserted in t,he calling sequence. 

N Number of values loaded into A. May be zero. 

Procedure 

On entry, initialize array A if M is negative. Clear M. Scan for qualifiers starting at INEXT. If 
a qualifier is foiind, store i t  in  array A a n d  inrrcvnent N; if option let,ter L has been specified, 
store the index in array L. 

EXAMPLE 8.2 

Assume that the last loaded command is 

SOLVE FOR X=(1/3) /RAIlGE= 25,86 /SCALE 
and that ILOAD = 0. To load all qualifiers into character array qUALS*6(4), do 

On return from CLOADq, qUALS(1) = 'RAHGE', qUALS(2) = 'SCALE', and 1J = 2. 

8-5 



Sectlon 8: LOADING KEYWORDS AND QUALIFIERS 

$8.4 GET KEYWORD GIVEN ITS POSITION: CCLKEY 

Character function CCLKEY returns the value of a keyword given the keyword position as 
argument. 

Calling Sequence 

CHARACTER*(n) K E Y ,  CCLKEY 1 KEY = CCLKEY ( I K )  1 
Input Arguments 

I K  The keyword position (do riot confuse it with its item index). 

Function Return 

CCLKEY Left justified value of the IKth keyword if one exists, otherwise it is 
blank. If the keyword letigtli exceeds the passed length, the rightmost 
characters wi l l  be truncated. 

Proced ure 

The Decoded Item Table is scanned from the beginning while counting keywords. When 
the count reaches IK, the keyword value is returned. Otherwise, a blank is returned. 

EXAMPLE 8.3 

Assume that the last loaded corninand is 

SOLVE FOR X=(1/3) /RANGE= 25.86 /SCALE STORE 

Then 
CHARACTER*8 KEY, CCLKEY 

KEY = CCLKEY (4) 

places 'STORE' into KEY because STORE is the foirrtli keyword (the first t l i r w  ate SOLVE, FOR, and 
X I .  

8-6 



$8.5 G E T  QUALIFIER GIVEN I T S  POSITION: CCLQUL 

$8.5 GET QUALIFIER GIVEN ITS POSITION: CCLQUL 

Character function CCLqUL returns the value of a qualifier given the qualifier position as 
argument . 

Calling Sequence 

CHARACTER*(n) KEY, CCLqUL 

KEY = CCLQUL (19) 

Input A rgume nt s 

IQ The qualifier position (do riot, confuse it with its item index). 

Function Return 

CCLQUL Left justified value of the Iqth qualifier if one exists, otherwise it is 
blank. If the qualifier length exceeds the passed length, the rightmost 
characters will be truncated. 

Procedure 

The Decoded Item Table is scanned from the beginning while counting qualifiers. When 
the count reaches 19, the qualifier value is returned. Otherwise, a blank is returned. 

EXAMPLE 8.4 

Assume that the last loaded conirnand is 

SOLVE FOR X=(1/3) /RANGE= 25,86 /SCALE STORE 

Then 

CHARACTERIB KEY, CCLqUL 

KEY = CCLqUL (4) 
. . .  

places 'SCALE' into KEY becallfie SCALE is the second qualifier. 

8-7 



Section 8: LOADING KEY WORDS AND QUALIFIERS 

$8.6 GET NUMBER OF KEYWOR.DS: ICLNKY 

Integer function ICLNKY, which is called with an empty argument, returns the number of 
keywords in the last command. 

Calling Sequence 

NK = ICLNKY 0 I 

Function Return 

ICLNKY Number of keywords in the last command. May be zero. 

Procedure 

The Decoded Item Table is scanned from beginning to end while counting keywords. The 
count is returned as function value. 

EXAMPLE 8.5 

Assume that, the last loaded command is 

SOLVE FOR X=(1/3) /RANGE= 26.86 /SCALE STORE 

Then ICLNKYO returns 4, which is the number of keywords (SOLVE, FOR, X and STORE). 

8-8 



$8.7 GET NUMBER OF QUALIFIERS: ICLNQL 

$8.7 GET NUMIIER OF QUALIFIERS: ICLNQL 

Integer function ICLNqL,  which is called with an empty argument, returns the number of 
qualifiers in the last command. 

Calling Sequence 

Fu n ct ion Ret urn 

ICLNqL Number of qualifiers in the last command. May be zero. 

Procedure 

The Decoded Item Table is scanned from beginning to end while counting qualifiers. The 
count is returned as function value. 

EXAMPLE 8.6 

Assume that the last loaded corninand is 

SOLVE FOR X=(1/3)  /RAIICE= 25,86 /SCALE STORE 

Then ICLNQLO returns 2, which is the nunilwr of qiialifiers (RAMGE and SCALE). 

a --o 



Sectlon 8: LOADING KEYWORDS AND QUALIFIERS 

THIS PACE r ,mv B L A N K  INTENTIONALLY. 

8-10 



Retrieving 
Item Information 

9 ---1 



Sectlon 9: RETRIEVING I T E M  INFORMATION 

§9.1 GENERAL DESCRIPTION 

This Section describes some functioti enhy points by which mirrcellaneous information 
about items in the Decoded Item Table can be directly retrieved. For example, prefix, 
separator, item type code, and total number of items. 

From a Processor developer's standpoint, the most useful entry point is possibly 
ICLTYP, which returns item data type codes. 

REMARK 9.1 

These entry points are useful for detailed processing of commands that do not quite fit the standard 
CLAMP format of Section 3. 

9-2 



$9.2 RETRIEVE I T E M  PREFIX: CCLPRE 

$9.2 RF;TRIEVE ITEM PREFIX: CCLPRE 

Entry CCLPRE, referencod as a CHARACTER* 1 function, returns the prefix character associ- 
ated witti an i t w i  itlciitificd by iks iiiclcx i i i  lotic* 1)ocoded Iiem 'l'ablc. 

Calling Sequence 

CHARACTER*l CH, CCLPRE 

CH = CCLPRE (I) 
. . .  

Input Argument 

I If I > 0,  item nu~nber. 

If zero, IHEXT is assumed. 

Function Return 

CCLPRE Item prefix (see 54.1). If argurneiit is out, of bounds, a blank is returned. 

Procedure 

Set CCLPRE to blank. Check whether argument is in bounds; if so fetch prefix character 
from Decoded Item Table and return. 

REMARK 9.2 

The only prefix the Processor is normally interested in is the qualifier prefix, which is the slash 
by default. The qualifier prefix may be retrieved by calling CLCHAR as described in 511.1. 

EXAMPLE 9.1 

Assume that the last comninnd is 

OPEN /ROLD 3 ,  [REAGAIJ] BUDGET. DEF / L I M I T = I H F I N I T E  

Then CCLPRE(2)  returns /, which is t,hc prcfix o f  qiialifirr ROLD. 

9-4 



Section 9: RETRIEVING I T E M  INFORMATION 

59.3 RETRIEVE ITEM SEPARATOR: CCLSEP 
Entry point CCLSEP, which is referenced as a CHARACTER*i function, returns the separator 
associated with an item identified by its index in the Decoded Item Table. 

Calling Sequence 

CHARACTERIl CH, CCLSEP 

CH = CCLSEP (I) 

Input Argument 

I If I > 0, item number. 
If I = 0, INEXT is assumed. 

Fun.ction Return 

CCLSEP Itern separator (cf. §4.1). If the argument is out of bounds, a blank is 
returned. 

Procedure 

Set CCLSEP to blank. Check whether arguxiiciit is i n  hounds; if so fctcli prefix character 
from Decoded Itern Table a n d  return. 

REMARK 9.3 

For command processing the most interesting nonblank separators are the equals sign, which 
separates a keyword or qualifier from assigned values, and the comma, which connects items that 
pertain to an item list. 

EXAMPLE 9.2 

Assume that t,he last command is 

Then CCLSEP(3) retiirns a comma, which follows integer 3, and CCLSEP(6) returns an equals sign, 
which follows qualifier LIMIT. 

0-4 



g9.4 RETRIEVE LIST LENGTH: ICLIST 

59.4 RETRIEVE LIST LENGTH: ICLIST 

Integer function ICLIST returris the Ic!ngth o f  a iterti list that starts at a specified index. 

Calling Sequence 

I LL = ICLIST (I) I 

Input Argument 

I If I > 0, item number. 

If I = 0, INEXT is assumed. 

Function Return 

ICLIST 1,ist length. If I is in range, the length will always be one or greater 
(because a isolated item is an one-item list). If I is out of range, ICLIST 
returns zero. 

9 -5 



Sectlon 9: RETRIEVING I T E M  INFORMATION 

i9.6 RETRIEVE NUMBER OF ITEMS: ICLNIT 
Integer function ICLNIT, which is called with an empty argument, returns the total number 
of items in the Decoded Item Table. 

Calling Sequence 

I ITEMS = ICLHIT ( I 

Function Return 

ICLNIT The total number of items in the Decoded Item Table. 

EXAMPLE 9.3 

Write a two-line Processor code block that prints the data type codes of all items in the Decoded 
Item Table. Here it is: 

DO 2000 I = 1,ICLMITO 
2000 PRINT *, 'Data type of item number',i.' ie ' ,ICLnP(I) 

Function ICLTYP is dcscribetl in 59.7. 

9-6 



59.6 RETRIEVE LOAD POINTER:  ICLOAD 

$9.6 RETRIEVE LOAD POINTER: *ICLOAD 

Integer function ICLOAD, which is called with an empty argument, returns the current value 
of the load pointer ILOAD. 

Calling Sequence 

I ILOAD = ICLOAD ( 1 I 
Function Return 

ICLOAD The current value of the load pointer. 

EXAMPLE 9.4 

A message call usually resets ILOAD. Assuming that the message contains only directives, write a 
code block that restores ILOAD. 

ISAVE = ICLOAD ( 1 
CALL CLPUT ( . . . 1 
CALL CLSLOP (ISAVE) 

4 

Su1,routine CLSLOP is described in 510.3. 

9--7 



Section 9: RETRIEVING ITEM INFORMATION 

59.7 RETRIEVE ITEM TYPE: ICLTYP 

Integer function ICLTYP returns the data type code of an item identified by its index in 
the Decoded Item Table. (This is the actual code stored in the Table.) 

Calling Sequence 

~- 

\-~TYPE = ICLTYP (KEY) I 

Input Argtiment 

I If I > 0, ibeni index. 
If I = 0, INEXT is assumed. 

Function Return 

ICLTYP Returns the item type code: 
ICLTYP = n > 0 if item is n-character string. 
ICLTYP = 0 if item is integer. 
ICLTYP = -1 if item is floating-point (which is always stored in double- 
precision form). 
If the argiirrierit is out of boiirids, ICLTYP returns zero. 

Procedure 

Initialize ICLTYP to zero. A n  argument-in-bounds check is made and if verified the stored 
type code is fetched into ICLTYP. 

EXAMPLE 9.5 

Assume that the last commarid is 

COORDIlIATES llODE 1 = 2 . 5 ,  (5 /3 ) ,  - 6 . 4  

TIlcn t,hc r&vcnccs ICLTYP(1). ICLTYP(3) a114 ICLTYP(4) r d i i r n  11. 0 and -1, refp?ctively. 

9 -8 



10 
Miscellaneous 

Operations 

10-1 



Section 10: MISCELLANEOUS OPERATIONS 

$10.1 GENERAL DESCRIPTION 
This Section describes entry points for command-related operations that do not fit the 
framework of the previous Sections. 

10-2 



$10.2 G E T  ERROR INFORMATION: CLEINF 

$10.2 GET ERROR INFORMATION: CLEINF 

Entry point CLEIHF returns error information on a specific error condition. CLIP detected 
errors (and in general all NICE errors) are characterized by a 4-character key, an associated 
integer code, and an explanatory message. Giver1 the integer code, CLEINF may be used 
to retrieve the message, or given the error key, CLEINF may be used to get the error code. 
The type of operation is defined by a selector argument. 

Calling Sequence 

Three possible calling sequences are: 

CALL CLEINF ('C', ICODE, EKEY, 0) 
CALL CLEINF ( ' M ' ,  ICODE, MSC. KCH) 
CALL CLEINF (''I", ICODE, EKEY, 0) 

The first form is used to get ICODE given EKEY; the last argument is a dummy one. The 
second form is used to retrieve MSG (1  : KCH) given ICODE. The third form, which returns 
EKEY given ICODE, is used primarily in code testing. 

Input Arguments 

ICODE Error code. An input argurrient if the first argument is M or T. 

EKEY Four-letter error key. An input argument if the first argument is C. 

Output Argtrmen,ts 

ICODE Output argument if first argument is C. 

EKEY Output argument if first argument is T. 

MSC Error message. Output argument if first argument is M. 

KCH Number of characters rcturncd in  MSG. Output argument if first argu- 
riient is M. 

Procedure 

CLEINF simply calls NEKINF, which handles error information retrieval for the entire NICE 
system and resides on the NICE ut.ilities file. Users interested in the inner details should 
study the source code of NEKINF. 

4 

REMARK 10.1 

This entry point is primarily intended for those Processor developers that intend to do their own 
error handling. 

10-3 



Sectlon 10: MISCELLANEOUS OPERATIONS 

$10.3 GET ER.R,OR COUNTS: CLERRl 

Entry point CLERRl returns error coririt inforniation. 

Calling Sequence 

I CALL CLERRl (KFERR, KWERR) I , 

Output Arguments 

KFERR Count of fatal errors detected by CLIP since Processor execution start. 

KWERR Count of warning errors detected by CLIP since Processor execution 
start. 

Procedure 

Simple access to an internal common block to pick up the value of the counters. 

10-4 



510.4 G E T  L A S T  IMAGE: CLGLIM 

510.4 GET LAST IMAGE: CLGLIM 

Entry point CLCLIM returns to the calling program the last command image loaded by 
CLREAD. This is similar to what CLCET returns as third argument, but is intended for 
programs that make use of CLREAD to get parsed commands. Its main application is the 
processing of error conditions in programs that absorb voluminous input data. 

Calling Sequence 

E L  CLGLIM (IMAGE) I 

Output Argument 

IMAGE A character string into which CLCLIM places the image of the last ordi- 
nary command processed by CLREAD. 

Procedure 

Access dataline collector and retrieve portion marked “to be discarded” (the processed 
command image is not irrimediately erased, as 84.2 would make you believe). Store this 
text into argument IMAGE and return. 

REMARK 10.2 

The main use of CLGLIM is for displaying input, iiriages after an error has been detected by a 
Processor that  uses CLREAD to read rommands. 

EXAMPLE 10.1 

The last command read by a material Processor is 

ELASTIC MODULUS = -3 .738  

The Processor logic complains about a negative elastic modulus. After printing an appropriate 
error niessage, it branches to a subroutine GUILTY that  displays the image that caused the error: 

SUBROUTINE GUILTY 
CHARACTER*80 IMAGE 
CALL CLGLIM (IMAGE) 
PRINT ’ (A/IX.A) ’ , ’ Data line in error: ’ , image(1 :LEldETB(image)) 
RETURF! 
END 

Function LEMETB is described in Appendix I). For this use an 80-character image is enough, as it 
doesn’t matter too much if truncation occurs. 



Sect Ion 10: M IS CELLA N E 0 U S 0 P E R AT IO N S 

I $10.5 SHOW LAST IMAGE: CLSLIM 

Subroutine CLSLIM writes the last command image to the bulk print file if the dataline 
echo is off; otherwise, nothing happens. 

Calling Sequence 

[ CALL CLSLIM 1 
Procedure 

If the dataline echo mode is on, exit. Otherwise proceed as for CLCLIM ($10.1) but instead 
of storing the last cornmanti image to an argument, write it to the bulk print file. 

10-8 



$10.6 SET LOAD POINTER: CLSLOP 

$10.6 SET LOAD POINTER: CLSLOP 

I '  

Subroutine CLSLOP sets the load pointer ILOAD to the value specified in the argument. 

I '  

Calling Sequence 

CALL CLSLOP (I) 

c Input Argument 

I The value to be assigned to the load pointer. If less than zero, I = 0 is 
assumed. If greater than ITEMS, I = ITEMS is assumed. 

10-7 



Sectlon 10: MISCELLANEOUS OPERATIONS 

THIS PAGE LEFT BLANK INTENTIONALLY. 

10-8 



11 
Retrieving 

Run Information 

11-1 



Sectlon 11: RETRIEVING RUN INFORMATION 

§ll.l GENERAL DESCRIPTION 

This section collects entry points that provide miscellaneous information about the run 
state and certain run parameters maintained by CLIP. The information is not related to 
a specific command or command items. 

11-2 



$11.2 G E T  CONTROL CHARACTER: CLCHAR 

$11.2 GET CONTROL CHARACTER: CLCHAR 

Entry point CLCHAR, which is referenced as a character function, returns the character used 
by CLIP for certain control functions. The type of function is identified by the argument. 

Calling Sequence 
~~ 

I CALL CLCHAR (KEY, CHI I 

Input A rg um e nt 

KEY One of the keywords specified in Table 11.1. Only the first four charac- 
ters are considered significant. 

Output A rgti m e nt 

CH Control character associated with the function specified in KEY. The 
default value shown in Table 11.1 is returned unless the value has been 
changed through a SET CHARACTER directive. 
If KEY is not matched, a blank character is returned. 

11-3 



Sectlon 11: RETRIEVING RUN INFORMATION 

Table 1 1.1 Inforinat ion Returned by CLCHAR 

Argument k e y  Information Returned Default 

ARCBEG Left formal-argument delimiter I 
in procedure body 

ARGEND 

DIRPRE 

ENDSRC 

EOLl 

EOL2 

MACBEG 

MACEND 

MACPAR 

QUAPRE 

REPEAT 

Right formal-argument delimiter I 
in procedure body 

Directive prefix * 

End-of-command-source sentinel Q 

End of line terminator #1 
(also comment sentinel # I )  

End of line terminator #2 
(also comment sentinel #2) 

Left macrosymbol delimiter < 

Right macrosymbol delimiter > 

Macro definition parameter marktar % 

Qualifier prefix / 

lttni repctitor Q 

11--4 



$11.3 GET RUN STATE DATA: ICLRUN 

$11.3 GET RUN STATE DATA: ICLRUN 

You may interrogate CLIP on run state or run parameters by calling the integer function 
ICLRUN. The type of information you seek is specified in the argument. 

Calling Sequence 

Input A rg urn e nt 

KEY 

Function Ret td  rn 

ICLRUN 

I INF = ICLRUN (KEY) I 

One of the information retrieval keys listed in Table 11.2. 

Returns the information indicated in Table 11.2. 

If the argument key is not matched, ICLRUN returns zero. 



Section 11: RETRIEVING RUN INFORMATION 

Table 11.2 Inforiiiatioii Ret,urried by ICLRUN 

A r g u m e t i t  key ltijorniation Refur t i ed  

RUN Batch/interactive indicator. In general, 
0 : run is batch mode. 
>O : run is iriteraclive, 

Under VAX/VMS, further details are available: 
1: command procedure executed interactively 
2: coiiversational (terminal input). 
10,11,12: as above, but spawned process. 

L IW 

LPW 

Line input width in characters (normally 80 
characters, but may be expanded up to 132) 

Line print, wid th  i n  charatters (normally 80 in 
interactive mode arid 132 in batch mode) 

11-6 



$11.4 G E T  LOGICAL UNIT  DATA: ICLUNT 

511.4 GET LOGICAL UNIT DATA: ICLUNT 

Integer function ICLUNT retrirris the logical unit number of certain card-image files used 
by CLIP. 

Calling Sequence 

Input Argument 

KEY 

Function Ret urn 

ICLUNT 

I LU = ICLUNT (KEY) I 

One of the information retrieval keys listed in Table 11.3. 

Returns the inforination indicated in Table 11.3. 

If the argument key is not matched, ICLUNT returns zero. 

11- -7 



Sectlon 11: RETRIEVING RUN INFORMATION 

Table 11.3 Information Returned by ICLUNT 

Argument key 

CIFI 

ERR 

LOG 

PRT 

Infor m a t  ion Ret t i  r tied 

Logical unit number of the command source 
file from which CLIP is reading data lines. 
If zero, the default input device is assumed. 

Logical unit number of the error print file if 
greater than zero. If zero, error messages go 
to the default print file (the terminal in 
interactive mode). 

Logical unit number of the command log file if one 
is currently open, otherwise zero. 

Logical unit number of the bulk print file. 

Usual Value 

0 

0 

0 

6 



12 
Retrieving 

Macrosymbol Values 

12-1 



Section 12: RETRIEVING MACROSYMBOL VALUES 

512.1 GENERAL DESCRIPTION 

The processor may retrieve the value of a macrosymbol or of a general expression that 
contains macrosymbols through function entry points of the form zCLMAC. The first letter 
identifies the data type of the function return: C for character, D for double-precision, F 
for single-precision floating-point, I for integer, and 14 for nearest integer. The function 
argument is a character string that carries the macrosymbol or macro expression. 

REMARK 12.1 

These entry p0int.s are for very advanced developers, who are expected to be thoroughly familiar 
with the macrosymbol facilities of CLIP as described in Volume 11. 

12-2 



512.2 G E T  MACRO VALUE: K L M A C  

512.2 GET MACRO VALUE: zCLMAC 

There are five macro-value-retrieval entry points of the form zCLMAC, which are referenced 
as functions. The first letter z is C, D, F, I or N and designates the data  type of the 
returning value. There is a single argument: a character string that has the macrosymbol 
or macroexpression to be evaluated. 

Calling Sequence 

V = zCLMAC (TEXT) 1 
Input A rgu m e nt 

TEXT 

Function Return 

KLMAC 

A character string that has the name of the tnacrosymbol or the text of 
the macroexpression to be evaluated. 

For example, FCLMAC( 'pi ' 1 returns <pi>= T = 3.14159165.. . in 
FCLMAC, and DCLMAC( 'exp(<pi> '1 returns cexp(<pi>) >= e= in DCLMAC. 

As the examples show, the outer pair of c > delimiters may be omitted. 

The length of TEXT should not exceed 480 characters, which is fairly 
generous. 

'I'lle value of the argument expression, returned in the data type specified 
by the first letter of the function name: 
.r = C, character string (passed length assumed). 

5 = D, double-precision floating-point. 
r = F, single-precision floating-point. 

T = I or 1.1, iiiteger. 

Des c r i p t  ion 

On entry, surround argiimcnt text with a < > pair, prefix the whole by the evaluate- 
directive key *VAL and submit to self as a one-line message. The expression that follows 
*VAL is processed by the macrosymbol facility. Access the result and return as function. 

REMARK 12.2 

If the result of the argument evaluation is a charact>er string, DCLMAC, FCLMAC, ICLMAC and NCLMAC 
return zero. 

REMARK 12.3 

If the result of the argument evaluation is numeric, CCLMAC returns blank. 

12-3 



Sectlon 12: RETRIEVING MACROSYMBOL VALUES 

EXAMPLE 12.1 

CCLMAC ( ' if def (<exp> ; true ; f alee ' 1 
FCLMAC ('2^.5*<exp(-2)>') returns &/e2 
ICLMAC ('max(l2;<pi>*<pi>)') returns 12 

returns TRUE 

12-4 



I ’  
13 

Workpool 
Manager 
Interface 

13-1 



Sect ion 13 : W 0 R K P 0 0 L M A N A G E R I N T E R FA C E 

513.1 GENERAL DESCRIPTION 

The NICE system now contains a local data manager called the Workpool Manager, or 
WM. CLIP communicates with WM through a directive/macrosymboI interface as docu- 
mented in $9 of Volume 11. The Processor may communicate with WM through the set of 
entry points documented here. Bypassing the directive interface cuts down the overhead 
involved in command item processing. 

As of this wit ing the WM entry points are experimental and subject to frequent 
change. So a formal description will have to wait for the next cycle of this document. 

13--2 



APPENDICES 



A 
A $300,000 

Calculator 

A--1 



Appendlx A: A $300,000 CALCULATOR 

SA.1 SIMULATING AN RPN CALCULATOR 

To illilstrat,e the  simplest f o r i n  of cointiiaiids, we arc going t 8 0  build a ‘(virtual calculator” 
on the VAX. More specifically, a “toy processor" that simulates an IIPN (Reverse Polish 
Notation) calculator exemplified by the popiilar Ilewlett-I’ackard (IIP) models. 

Recall that RPN calculators are stack rncrchittes. We will assume a 4-register opera- 
tional stack: 

Y 
X (bottom) 

These registers are programmed to hold signed single-precision floating-point numbers. 
We shall use parentheses to denote the value stored in a stack registers; thus (X) means 
the contents of register X. To represent such a stack in a FORTRAN program, a labelled 
common block will do: 

common /STACK/ x ,  y ,  z ,  t 
real x, y ,  z .  t 

Deciding upon this representation at this early stage is not capricious. It responds to a 
basic design yrin ci ple: 

Designing the stack for this toy processor takes perhaps ten seconds. For the example Pro- 
cessor of Appendix B, data design takes a couple of hours. For a real-life NICE Processor 
that has to communicate with other Processors, it may take several weeks. Whatever it 
takes, it’s time well spent. 

The Basic Commands 

\Ve shall assump t h a t  each calcirlntor cornrriantl can havc only one itcm. 
iiltiniate in coininand language simplicity! 

it doesn’t matter) or one of the following keywords: 

Pfairtly the 

The item can be either a number (written as either integer or floating-point number, 

0 I? 
ENTER 
ADD 
SUBTRACT 
PS 
OFF 

A-2 



SA.1 SIMULATING AN RPN CALCULATOR 

The underlying idea is that each one word command simulates a keystroke on a hand-held 
calculator. 

The keyword roots will be O N ,  E ,  A, S, P and OF, respectively, which uniquely identify 
the commands. (Of course, should more commands be added these roots may have to be 
altered; for example, if SqRT is added then root S becomes ambiguous and we must expand 
the root of SUB to SU.) 

Operat ions 

Typing a numeric value causes the stack to be raised (as discussed below for operation 
ENTER) and the value to be stored, as a floating point constant, in register X. This is true 
even if an integer is typed; for example typing 26 results in (X) +- 26.0. 

The meaning of keyword commands is as follows. 
0 N “Turns on” the calculator. All stack registers are initialized to zero. If 

typed during the run, it has the effect of a calculator’s “CLEAR” key. 

ENTER Copies ( X I  into register Y arid raises the stack (HP terminology). More 
precisely, (2) -, T, (Y) -+ 2, ( X )  + Y, and (T) is lost. 

ADD Adds ( X )  to (Y), places result in ( X I  and lowers the stack; that is, (Z) 
-+ Y, (Y) -, X, while T is unchanged. The  new value of X is printed. 

SUB Subtracts ( X )  from (Y), places result in ( X I  and lowers the stack; that 
is, (Z) -+ Y ,  (Y) --t X, while T is unchanged. The new value of X is 
printed . 

PS Prints the complete stack, i.e. ( X I ,  (Y), (Z), and (T). 

OFF “Turns off” the calculator by terminating the run of the Processor. 

Next we describe how these operations can be irnplemented as simple FORTRAN subrou- 
tines. 

Turning On 

The 011 operation consists of a simple initialization: 
I 

subrout ine O N  / 
common /STACK/ x, y ,  z, t 
real x. y ,  z, t 
x =  0.0 

z =  0.0  
t =  0 .0  
r e t u r n  
end 

y = 0.0 

A-3 



Appendix A: A $300,000 CALCULATOR 

Storing a Number 

The code for storing a new numeric value xnew in register X is 

subroutine STOREX (xnew) 
common /STACK/ x, y,  z, t 
real x 1  y ,  z, t 
call ENTER 
x =  xnew 
re turn 
end 

where the ENTER subroutine is described below. 

The ENTER Operation 

Implementation of the ENTER operation is equally straightforward: 

subroutine ENTER 
common /STACK/ x. y ,  z, t 
real x, y ,  z, t 
t =  Z 
2 "  Y 
Y =  X 
return 
end 

The ADD mid SUBTRACT Operation 

The. implementation of these two operations is quite similar: 
- 

subroutine ADD 
common /STACK/ x, y ,  z, t 
real x ,  y ,  z. t 
x =  y + x  
Y =  Z 
z =  t 
print * ,  ' X : ' ,  x 
return 
end 

subroutine SUB 
common /STACK/ x, y l  z, t 
real x ,  y ,  z, t 
x =  y - x  

A-4 



§ A . l  SIMULATING AN RPN CALCULATOR 

Y ’  z 
z =  t 

return 
end 

p r i n t  * ,  ’ X : ’ ,  x 

A--6 



Appendix A: A $300,000 C A L C U L A T O R  

Printing the Stack 

Very simple with a list-oriented print statement: 

subrout h e  PS 
common /STACK/ x ,  y ,  z, t 
r e a l  x ,  y ,  z .  t 
pr in t  * .  ' S t a c k : ' ,  x , y , z , t  
returi; 
end 

Turning Off 

This is just a run stop: 

subroutine OFF 
s top  'That i s  a l l ,  f o l k s '  
end 

A-6 



$A.2 THE EXECUTIVE 

5A.2 THE EXECUTIVE 

In true bottom-up program-building style, we are ready for the pikce de resistunce: the 
main program that drives all those small subroutines. Like all interactive programs fitting 
the NICE Processor model, the driver is essentially an infinite loop that can be expressed 
informally as 

Program IIP VAX 
Begirt 

Do joreuer { 
G e t  nest  coni tnand 
Process cotnniand } 

End 

This may be readily implemented as a FORTRAN main program: 
~~ 

program HPVAX 
* 
* 
$ 

Simulating a $50 RPH calculator on a $300,000 minicomputer 

character*$ key, CCLVAL 
integer ICLVAL 
real x, FCLVAL 

1000 continue 
call CLREAD ( ’  Command> ’ ,  

$ 9 OH, ENTER, ADD, SUB, PS, OFF,) 
if (ICLTYP(1) .le. 0) then 
x = FCLVAL(1) 
call STOREX (XI  

key = CCLVAL(1) 
call DOKEY (key) 

else 

end if 
go to 1000 

end 

Program HPVAX asks for the next command by calling CLREAD ($2.7). This call specifies 

Command> 

as the prompt message you will see on the tcrrninal. The “splash” line, which will appear 
on the terminal if the “verbose” echo mode is turned on, is simply a remainder of the 
available commands. 

On ret.urn from CLREAD, the program chocks for the type code of the first (and only) 
command item through ICLTYP (510.3). If the item is numeric, i t s  floating-point value 
is retrieved through function FCLVAL (56.3), and STOREX is called to put it in register X. 
Otherwise the command is a keyword, which is retrieved via CCLVAL ($6.1) and placed into 
character string variable key; subroutine DOKEY is called to interpret the command. 



, Appendlx A: A $300,000 CALCULATOR 

Subroutine DOKEY is essentially a six-way “case” statement: 

subroutine DOKEY (key) 
character* (*I  key 
logical CMATCH 
if (CMATCH (key, ‘A-DD’)) then 

else if (CMATCH (key, ’E-NTER’) then 

else if (CMATCH (key,’OF-F’)) then 

else if (CMATCH (key, * O i l  ’1 ) then 

else if (CMATCH (key, ’PAS’)) then 

else if (CMATCH (key,’S-UB’)) then 

else 

end if 
return 
end 

call ADD 

call ENTER 

call OFF 

call 011 

call PS 

call SUB 

print k ,  ’ * * *  Illegal or ambiguous keyword: ‘,key 

c 

The logical function CMATCH compares two keywords following the “root + extension” rules 
stated in $5.1. The calling sequence is described in Appendix I). 

Note that the IF-THEN-ELSE construction tests commands alphnbeticnlly. There is one 
motivation behind this: i f  you later come back to DOKEY to insert additional commands 
(and you will) ,  having sorted keywords greatly simplifies checking whether their roots 
ought to be exparided to avoid ambiguities as discussed in 55.1. 

The implementation of t,he six-command calculator is complete. 

A--8 



5A.3 RUNNING HPVAX ON THE VAX 

5A.3 RUNNING HPVAX ON THE VAX 

If you have never run a CLIP-supported interactive program before, then HPVAX is not a 
bad place to start .  The internal logic is so straightforward that there is little chance that  
the workings of the calculator will niask the goings-on of the interactive process. 

The following material assumes that the work will be per- 
formed on a V A X  11/7zx minicomputer running under 
V=l X /  VMS. 

Preparing an Execu tab le  Image 

If you do not have access to an executable image of HPVAX, you will have to make one by 
yourself. Here are the basic steps explained in cookbook fashion. 

Since HPVAX is so tiny, it is convenient to have all of its code in a single source file, 
say HPVAX. FOR. Upon compiling it you have an object file called HPVAX. OBJ. 

Next you must link to the NICE ohject library. On several VAX systems at LMSC 
and La€tC/CShl, this library resides 011 the file 

NICE$OLB : NICE. OLB 

where NICE$OLB is a system-wide logical name, so you can create an executable image by 
saying 

LINK HPVAX, NICE$OLB:NICE/LIB 

On some systems there is a “shareable image” version of the NICE library, which is accessed 
by saying 

LINK HPVAX , IIICE$OLB : SHARENICE/LIB 

If SHAREtJICE is available, by all rtiearis use it, since it saves both link time and executable- 
image size (the latter drops from over 400 disk blocks -- 1 disk block = 512 bytes - to 
less than 10). 

What,ever the library used, you should ctid up with an executable image file called 
HPVAX. EXE. To run this image you say, reasonably cnough, 

RUII HPVAX 

and now the fun begins. 

A -9 



Appendix A: A $300,000 C A L C U L A T O R  

Typing Commands 

HPVAX’s prompt rnessage will show up on the screen as 

Coin ni a n  d> 

and the cursor stays “frozen” after the angle bracket (>). It is waiting for you! You may 
begin by responding O N  followed by a carriage-return, and the prompt reappears: 

Command> ON 
Command> 

Next type PS followed by carriage-return. The program will then print the contents of the 
stack, which should be four zeros, and then come back with the usual prompt: 

Command> PS 
Stack: 0.0000E+OO O.OOOOE+OO 0.0000E+OO 0.0000E+OO 
Command> 

Next you should try entering numbers. Type 1, then 2, then 3, then 4, following each 
number with a carriage-return. Then type PS and verify that the four numbers are in the 
stack. 

Command> 1 
Command> 2 
Command> 3 
Command> 4 
Corrimantl> PS 
Stack: 4.0000E+00 3.0000E+00 2.0000E+00 1.0000E+00 
Comrnan d> 

Next try some ADD and SUBTRACT commands and verify that HPVAX works as an RPN 
calculator should. 

After you acquire some proficiency, try entering multiple commands per line. CLIP 
will let, you do this if  you separate commands with semicolons, btit do not forget to put 
a blank before each semicolon (a blank after a scriiirolon is not necessary but it doesn’t 
hurt) .  For example: 

Command> 011 ; 1 ; 2 ; 3 ; A ; A 

and you should sec the result X = 3+2+1 = 6. 

A-IO 



5A.3 RUNNING HPVAX ON THE VAX 

Suggested Run Exercises 

EXERCISE A . l  

Command  Formatting. Try entering an illegal command, e.g. ,  KILL. What happens? Enter com- 
mands in lowercase and uppercase forms. Does it matter? 

E X E R C I S E  A.2 

Composite Numbers. Enter (1/3) and print the stack. Did you get what you expected, uiz. the 
fraction one third? Then try entering (1-(1/3)) ,  (2^.5), ((1/9)*(1/9)), printing the stack after 
each entry. Comment on what’s going on. Did you realize that you have a n  algebraic calculator 
(within CLIP) embedded in a stack calculator (HPVAX)? 

E X E R C I S E  A.3 

Bui l t - in  Macrosysmbols. Enter <pi> and print the stack. Do you recognize that number? Then try 
entering <exp(l)>, <eing(46)>-2>, <logiO(2)> and <atan2g(l; l)>,  printing the stack after each 
entry. Comment. (To see all available built-in niacrosymbols, you may type *SHOW MACROS/B/V, 
but only after you understand directives.) 

E X E R C I S E  A.4 

Directives. Assurnirig that the source file HPVAX. FOR is in the same directory as you are running 
HPVAX . EXE from, say 

Command> *type hpvax . for 

What comes to your  screen? By printing the stack before and after this peculiar command, you 
may verify that nothing has happened to HPVAX. You have just entered a directive, which is a special 
cornmarid for int,erriaI consumption by CLlP. You can tell it apart from an ordinary command 
because its action verb is prefixed by an asterisk. ‘I ly  *TYPE or *LIST on some other card-image 
files. 

E X E R C I S E  A.5 

Echo Control. After bwo or three +TYPES, you should be an old hand at directives. Now enter *SET 
ECHO = ON. Type some command; what do you see? Then *SET ECHO = BELL. Then *SET ECHO 
= VERBOSE. For ohvious reasons, t hrse arc called m h o  options. The ordinary (default) options 
may be reset by entering *SET ECHO only. 

E X E R C I S E  A.6 

More on Display Options.  If you are working at  a VTlOO or VTlOO compatible terminal, try *SET 
ECHO/PROMPT = RV and *SET ECHO/SPLASH = RV followed by *SET ECHO = VERBOSE. 

c 

A---I1 



Appendix A: A $300,000 C A L C U L A T O R  

Suggested Programming Exercises 

EXERCISE A . 7  

Extending the Calculator. Implement MULTIPLY, DIVIDE and SqUAREROOT operations. 

EXERCISE A.8  

Continuing the previous exercise: How do you take care of arithmetic errors such as division by 
zero on DIVIDE or ncgative arguments to SQUAREROOT? Discuss alternatives. 

EXERCISE A . 9  

Complez  Arithmetic.  Convert HPVAX to operate as a “complex calciilator” by globally substituting 
all real declarations by complex and replacing FCLVAL by XCLVAL. Now each “numerical entry” 
involves entering a nurnber pair. Do the two values have to be separated by a comma? And what 
happens if you only enter one? 

E X E R C I S E  A . 1 0  

Messages.  Implement a CLEAR command that does the same thing as ON, i . e . ,  clears the stack. 
But instead of calling subroutine ON, CLEAR should call the following subroutine: 

Subroutine CLEAR 
c a l l  CLPUTW (’ON’) 
return 
end 

which sends a message through the I,iit-riieRsage-ancI-wait entry poiiit CLPUTW. Test it by filling the 
stack witch numbers, entering C, then PS. (‘l’n see the message in action, turn the echo on before 
typing CLEAR.) 

EXERCISE A . l l  

More on Messages. Implement a BELL command that iiiails the directive ‘*SET ECHO = BELL’ 
through the immediate-message ent,ry point CLPUT. 1Iow can the user turn off the bell? 

E X E R C I S E  A.12 

A n  Embryonic Database. Conceptually design SAVE and RESTORE commands to save the stack on 
a permanent FOR’I’RAN file, and to read it back. Do you think these operations are worth the 
effort for this application? 

EXERCISE A.13  

A hfatr i z  Calculator. Suppose trhat each of the “stack registers” hecomes an (n x ? I . )  matrix, where 
ri is a modest nuniber read when the calculator is turned on. Which commands would have to 
be changed? flow should numeric values be eritwed? Would “matrix edit” corxitnands be useful? 
Can you think of any uses for such a calciilator when t~ =: 2 or n = 3? 



A Direct 
Boundary Element 

Processor 

. 

B-1 



Appendlx 6: A D I R E C T  B O U N D A R Y  E L E M E N T  PROCESSOR 

5B.l BACKGROUND 

The case study presented in Appendix A deals with a “toy processor” purposely chosen to 
illustrate the simplest possible input form: one-item commands. The whole Processor can 
be written and tested in a couple of hours. 

The example Processor presented in this Appendix is still quite simple as production 
Processors go, but is no longer trivial. I t  requires about one week to put together. The Pro- 
cessor solves ir two-dimensional elastostatic problem by a directly-formulated* Boundary 
Element Method (BEM), and is appropriately named DUEM2. 

The “kernel” of the Processor is a BEM-program adapted from the book Boundary 
Elements Methods in Solid Mechanics by S. L. Crouch and A. M. Starfield, reference B-1. 
(See page B-53.) The program is called TWOBI and is presented in Appendix A of the 
book; it is based on the boundary-integral theory covered in Section 6 therein. 

The program is appropriate as an example of the use of interactive techniques because 
the input da ta  are fairly simple but the commands are now of multiple-item type and thus 
serve to  illustrate things like phrases, item lists, and defaults. 

* The term direct fornulatioti  refers to the  t~chriique used in deriving the governing boundary- 
integral equations. Direct methods are forriiulated from Ihe start in terms of physical quan- 
tities such as displacement and stress fluxes. On the olher hand, indirect methods are 
formulated in terms of source strength distributions, which have no direct physical meaning 
and are eventually eliminated following spatial discretization. 

B--2 



5B.2 THE BEM MODEL 

5B.2 THE BEM MODEL 

T h e  BEM model accepted by DBEM2 is a finite or infinite domain of elastic isotropic 
material under a plane-strain condition. If finite, the domain is enclosed by a boundary 
that consists of line segments as illustrated on the left of Figure 1. 

4 

Figure L3.1 Two-dinierisional dorriaiiis Lhat can be treated by DBEM2 

If the domain is infinite, it is assumed to be the exter ior  of a cavity defined by a series of line 
segments. Thus Figure 1 may also be viewed as defining an exterior problem. The sense 
in which the boundary is traversed when the component segments are defined determines 
whethcr the problem is interior or exterior, as illustrated in the Figure. 

Boundary conditions of stress-traction or displacement type may be prescribed on 
each segment as explained in further det.ai1 later. The prescribed values are assumed to be 
con.5fnnt over each segment,. 

Each line segment may be discretized into one or more boundary elements. All un- 
known quantities (displacements or stresses) arc assumed to be constant over each element. 
The element unknowns are evaluated at the element midpoints. There are two unknowns 
per element: a sliear (tangential) value and a normal value; these being the conjugates of 
the prescribed boundary values. 

The boundary unknowns are determined by solving a linear, unsymmetric system of 
algebraic equations. Once these unknowns are determined, stresses arid displacements 
at  any “field point” located in the interior of the domain can be readily calculated by 
Sornigliana’s superposition formula. 

B-3 



Appendix B: A DIRECT BOUNDARY E L E M E N T  PROCESSOR 

5B.3 THE DATA STRUCTURES 

Following sound practice, we begin by designing the data  structures first. The task is more 
complicated for DBEM2 than  for the toy program of Appendix A,  although it’s still trivial 
compared to the problem of designing a “global database” shared by many Processors. 

The task is simplified by the following considerations: 

The Processor presented here is isolated from others. There is no need to transact 
business with a global database. 
DBEM2 makes use of only one matrix, which is generally unsymmetric and full. There 
being no need to make use of sparse storage formats, an ordinary FORTRAN array 
suffice. 

Everything is assumed to fit in core a t  one time. Not having to dea.1 with auxiliary 
storage avoids tnany coniplications. 

As in Appendix A ,  all data  that has to be shared among many parts of DBEM2 are 
accommodated in labelled common blocks. But in the present Processor several blocks are 
used to group da ta  according to function. Furthermore, the blocks are declared in separated 
files whose extension (on the VAX system) is INC. These files are inserted where they are 
needed via INCLUDE statements. The use of INCLUDE enforces consistency (everything is 
declared only once) arid makes tnaintenance arid modification much easier. 

1.  

2. 

3. 

The Segment Data 

We begin by setting r i p  the data for boundary segments, which is placed in file SEGMENT. INC. 
The maximum nutnber of segments is parameterized to be MAXSEG, which is set to 100 in 
the version listed below. 

The IlBEM2 user will be allowed to define segments in any order and give them 
arbitrary numbers from 1 through MAXSEG, so we need a “marker” array that tells which 
segments have been defiried. We also need a counter of how many boundary elements are 
in each defined segment. Then there are the geometric arrays: tlie x and y coordinates of 
the end points. Finally, there are the boundary cotidition arrays: one integer code (related 
to that used by Crouch and Starfield (ref. B-1)) and two floating-point arrays of prescribed 
shear and normal values. Here is a list of the file that  groups this information: 

* 
* This is file SEGME1IT.IllC 
* 

common /SEGMENT,DATA/ 

integer MAXSEG 
parameter (MAXSEG=20) 
integer segdef(MAXSEG) ! Segment definition tag 
integer numel(MAXSEG) ! Number of BE divisions of eegment 
real xbeg(MAXSEG1 ! X-coord of starting segment point 
real ybeg(MAXSEG1 ! Y-coord of starting segment point 
real xend(MAXSEG) ! X-coord of ending segment point 

$ segdef, numel, xbeg, ybeg. xend, yend. kode, bvs. bvn 

B -4 



§ B . 3  THE DATA S T R U C T U R E S  

i ’  

real yend(MAXSEG1 ! Y-coord of ending eegment point 
integer kode(MAXSEG1 ! Segment BC code 
real bve(MAXSEG) ! Preecribed ehear value 
real bvn(MAXSEG) ! Prescribed normal value 

The style used in this IMCLUDE file will be followed for all others. There is a COMMON 
declaration that lists the shared variables. Then each variable is declared on a separate 
line. Tlic variable name is followed by an inline commeiit that provides a short description 
of the function of each variable. This brief documentation should be entered at the time 
you prepare or update the INCLUDE file. 

The Material Datja 

Since we are dealing with a homogeneous elastic isotropic material and we ignore thermal 
effects, the material is fully characterized by two properties: the elastic niodulus E and 
the Poisson’s ratio v.  These two are collected in file MATERIAL. INC : 

* 
* This is file MATERIAL. INC 

common /MATERIAL/ em, pr 
real em ! Elaetic modulus 
real pr ! Poieeon’e ratio 

* 

The Symmetry Data 

The program allows one or two lines parallel to the coordinate axes to be specified as axes of 
symmetry. For example, z = 2.5 or y = -1.50, or both. Three pieces of data accommodate 
this information: one symmetry tag (O=none, l=symmetry about z = a, 2 = symmetry 
about y = 6 ,  3 = double symmetry), and the values of a and 6 as appropriate. The 
necessary declarations are placed i n  file SYMMETRY. INC : 

* 
A! This is file SYMMETRY.II1C 
* 

common /SYMMETRY-DATA/ 
$ ksym, xsym, ysym 
integer ksym 
real xsym, ysym 

The Prestress Data 

The program allows a constant initial-stress field to exist in  the undefornied medium. This 
prestress tensor field is defined by the three coniponents c&, oiY and o!&. If undefined, 
these three values are assumed to be zero. File PRESTRESS. INC contains the appropriate 
declarations: 

* 

B-5 



Appendlx B:  A DIRECT B O U N D A R Y  ELEMENT PROCESSOR 

* This is file PRESTRESS.INC 
* 

common /PRESTRESS/ sxx0, ayy0, sxyO 
real sxx0 ! Prestress (initial field stress) sigma-xx 
real syyO ! Ibid., for sigma-yy 
real sxyO ! Ibid., for sigma-xy 

Prestress data  are especially important. for analysis of unbounded domains, for which they 
assume the rc:e of conditions at  infinity. For example, suppose that we want to analyze 
the effect of a hole in an infinite region under uniform uniaxial stress, say Then we 
set o:! = a,,, o;y = oEY = 0 in the input data. 

The Element Data 

The most voluminous data  arc those pertaining to the horiridary elements, since typically 
there will be many elements per segment. The information is collected in file ELEMENT. INC , 
which reads 

* 
c This is file ELEMENT. I H C  
* 

common /ELEMENT-DATA/ 

integer MAXELM, MAXEqS 
parameter (MAXELM=100) ! Maximum no. of boundary elements 
parameter (MAXEqS=2*MAXELM) ! Maximum no. of discrete equations 

$ numbe, xme. yme, hleng, sinbet, cosbet, kod. c, b, r ,  x 

integer 
real 
real 
real 
real 
real 
integer 
real 

numbe 
xme (MAXELM) 
yme (MAXELM) 
hleng (MAXELM) 
sinbet (MAXELM) 
c o abet (MAXELM) 
kod(MAXELM1 
b (MAXEqS) 

! Total number of boundary elements 
! X-coor of element midpoint 
! Y-coor of element midpoint 
! Half length of element 
! Sine of (element,x) angle 
! Cosine ibid. 
! Elem BC code (copies seg code) 
! Prescribed boundary values 

real c(MAXEqS,MAXEqS) ! Influence coefficient matrix 
real r (MAXEqS) ! Forcing (RHS) vector 
real x (MAXEqS) ! Solution vector 

The elements a r rays  sirch a$  XME, YME. etc. arc paramctcrized in tscrrns of the maximum 
number of elenients MAXELM. 

This block also contains arrays used to set up and solve the BEM equation system, 
namely C,  R ,  B and X. These are parameterized in terms of the total number of equations 
MAXEQS, which of course is twice MAXELM. 

. 

B-- 0 



$6.3 THE DATA STRUCTURES 

The Field Location Data 

The final block of data pertains to the location of field points at  which stresses and dis- 
placements are to be calculated once the boundary solution is obtained. The program 
allows these locations to be specified as equally spaced points along straight lines defined 
by the user. Up to M A X L I N  (=lo0 in the version below) lines can be defined. The locations 
are specified by giving the 5 and y coordinates of the first and last points on the line, 
and the nuniber of intermediate points (20) to be “collocated” between the first and last 
points. A n  isolated point may be specified by making the first and last point coincide. 

All of this information is gathered in file OUTPUT. I N C  : 

* 
* This ie file OUTPUT. IIJC 
* 

common /OUTPUT-DATA/ 

integer MAXLIN 
parameter (MAXLIN=100) 
integer lindef (MAXLIN) ! Line definition tag6 
integer nintop(MAXLIN1 ! 110. of intermediate points on line 
real xfiret(MAXLIl1) ! X-coor of first point on line 
real yfiret(MAXL1N) ! Y-coor of firet point on line 
real xlaet(MAXL1M) ! X-coor of laet point on line 
real ylast(MAXL1N) ! Y-coor of last point on line 

$ lindef, nintop, xfirst, yfiret, xlast, ylaet 

This concludes the design of the important data structures. Next we pass to the design of 
a command set to control logic of Dl3EM2. 

. 

B-7 



Appendix 8: A D I R E C T  B O U N D A R Y  ELEMENT P R O C E S S O R  

5B.4 THE COMMANDS 

Having described t,he data, we now have 1,o tlesigii an appropriate: set of commands to 
perform operations on the data. The writer found it convenient to chose coinmands headed 
by the following action verbs: 

CLEAR 
D E F I N E  
BUILD 
GENERATE 
SOLVE 
P R I N T  
S T O P  

Why these particular commands? Partly from a preliminary study of the problem, and 
partly from the wish[es] to get several corninand formats so that the use of many of the 
entry points described in the main body of this Volume would be illustrated. 

It turns out that  the last wish (of iilustrating various command formats) makes the 
command set a bit inconsistent,, but that  should riot cause a great deal of concern. After 
all, it's only an example. 

Another Processor developer faced with the same problem (even a simple problem like 
this one) may in fact come up with a radically different set, of command that  accomplishes 
virtually the same thing. 

We next describe briefly what, the commands do. 

CLEAR 

D E F I N E  

B U I L D  

CE NERATE 

SOLVE 

P R I N T  

S T O P  

Initializes all Tables rna.intained by the Processor and sets some default 
values. 

Enters data that are used in  the definition of the problem to be solved. 
The D E F I N E  verh will be followed by another keyword that  makes the 
data  more specific. 

Indicates that, the I)robleni-tlcfiriition phase is cwtnplete, and calls for 
thc generation of t hc discrot.e governing eq1iat.iotis. T h i s  is carried out  
i n  two phases identified by a keyword that follows BUILD.  

Triggers the assembly of the influence coefficient matrix and force vector. 

Triggers the solution for the unknown boundary variables. 

Prints displacements and stresses a t  boundary points and at specified 
field points. 

Terminates execution of the processor. 

13--8 



$B.5 STARTING A T  THE TOP 

§B.5 STARTING AT THE TOP 

We are going to build the Processor Executive “top down”. For this relatively small 
Processor it probably doesn’t make much differencc whether we do it top-down, bottom- 
up or inside-out. R u t  adhering to this approach makes life easier for bigger I’rocessors. 

Following the top-down approach we must do the main program first. Here it is: 
1 ‘  

* 
* 
* Boundary Element Method (DBEM2) 

* Adapted from program TWOBI i n  t h e  book Boundary Element Methods 
* Methods i n  S o l i d  Mechanics by S .  L .  Crouch and A .  M.  S t a r f i e l d ,  
* G .  Allen k Unwin, London, 1983, by C .  A .  Felippa t o  
* exemplify conversion t o  i n t e r a c t i v e  operat ion v i a  C L I P .  

Computer Program f o r  t h e  Two-Dimensional Direct  

* 

* 
program DBEMZ 

i m p l i c i t  none 
character*8 CCLVAL, verb 
i n t e g e r  ICLTYP 

* 

* 
1000 c a l l  CLREAD ( ’  DBEM2> ’ ,  

$ ’ CLEAR, DEFINE, B U I L D ,  GENERATE, SOLVE, * / /  
$ ’ PRINT, STOP ’ 

i f  (ICLTYP(1) . l e .  0) then 

e l s e  
p r i n t  * ,  ’ * * *  Commands must begin with keyword’ 

verb = CCLVAL(1) 
c a l l  DO-COMMAND (verb) 

end if 
go t o  1000 

end 

Some differences with the main program of HPVAX are evident. A top-level command must 
start  w i t h  a n  ac t ion  verb; it cannot s t a r t  with a nrimcric item, hence the error check. 
The prompt is now the name of tho Processor: this is a coriventhn follrwcd in the NICE 
system. 

The  observant reader will note substantial similarities with the main program for 
Processor HPVAX presented in Appendix A. It is a fact that the top level of all Processors 
looks very much the same, regardless of the corriplexity of what lies underneath. This is 
not surprising if you note that all Processors f i t ,  the “do forever” rnodel illustrated in 5A.2. 

The  next level is DOXOMMAND, which is agairi a “case” statement that branches on the 
action verb: 

B-9 



Appendix B: A DIRECT BOUNDARY ELEMENT PROCESSOR 

* Top l e v e l  command i n t e r p r e t e r  f o r  DBEM2 
* 

subroutine DO-COMMAND (verb) 

imp1 i c it none 
charac te r  key*8, verb*(*) 
l o g i c a l  CMATCH 

key = verb 
i f  (CMATCH (key, 'BYJILD')) then 

else i f  (CMATCH (key * 'C-LEAR')) then 

e l s e  i f  (CMATCH (key, 'D-EFINE')) then 

else i f  (CMATCH (key, 'G-ENERATE')) then 

e l s e  i f  (CMATCH (key. 'H-ELP')) then 

else if (CMATCH (key. 'P-RI!JT')) then 

e l s e  i f  (CMATCH (key. 'SO-LVE')) then 

e l s e  i f  (CMATCH (key, 'ST-OP')) then 

e l s e  

end i f  
r e t u r n  
end 

* 

* 

c a l l  BUILD 

c a l l  CLEAR 

c a l l  DEFINE 

c a l l  GENERATE 

c a l l  HELP 

c a l l  PRINT 

c a l l  SOLVE 

c a l l  STOP 

p r i n t  8 ,  ' * * *  I l l e g a l  or ambiguous verb: ' ,  key 

Note again that the tests are ordered so that keywords are alphabetically sorted. This 
makes it easier to insert new keywords without. forgetting to expand roots of existing ones. 
For example, suppose you warit to insert a PLOT rornrnand for your favorite graphic device; 
iriscrting it just before the test for PRINT tiinkcs it easy to spot that the root for the latter 
has to be expanded to PR. 



i B . 6  STARTING A N D  S T O P P I N G  

I .  

SB.8 STARTING AND STOPPING 

The CLEAR subroutine is quite simple, as it only has to zero out the model definition tables: 
~ ~~ 

* 
* Initialize tables, set default values 
* 

subroutine CLEAR 

imp 1 i c i t 
include ' SEGMENT. inc ' 
include ' ELEMENT. inc ' 
include 'MATERIAL. inc ' 
include *SYMMETRY. inc ' 
inc lude 'PRESTRESS.inc' 
include 'OUTPUT. inc ' 
integer i 

do 1500 i = 1,MAXSEG 

C 
none 

* 

eegdef(i) = 0 
xbeg(i) = 0.0 
xend(i) = 0.0 
ybeg(i) = 0.0 
yend(i) = 0.0 
numel(i1 = 0 
kode(i) = 0 
bvs(i) = 0.0 
bvn(i) = 0.0 

1500 coqtinue 
* 

do 2000 i = 1.MAXLIIl 
lindeffi) = 0 

2000 continue 
nunbe = 0 

keym = 0 
em = 1 . o  

sxxo = 0 0 

* 

pr = 0.0 

syyo = 0.0 
sxyo = 0 0 
print * ,  'Tables initialized' 
return 
end 

The functiori of the arrays is explained iri 5R.3. 

B-11 



Appendix B: A D I R E C T  BOUNDARY ELEMENT PROCESSOR 

Equally simple is the STOP subroutine: 

* 
J. Terminate the run 
* 

subroutine STOP 
s t o p  'Hope you enjoyed the ride' 
end __ - ___ ___.- -- 

B-12 



§B.7 DEFINING THE PROBLEM 

5B.7 DEFINING THE PROBLEM 

The DEFINE command introduces problem-definition data. It is convenient to break up 
the definition into several types of data, which correspond closely to the data-structure 
grouping discussed in §B.3. Each type is identified by a keyword that immediately follows 
DEFIFIE. The keywords are: 

SEGMENTS 

ELEMENTS 

Specifies the straight-line segments that make up the boundary 
of the problem to be solved. 

Specifies into how rriany boundary elements each segment will 
be divided. 

BOUNDARY XOMDITIONS Specifies the boundary conditions that apply to each boundary 
segment. 

SYMMETRY -COlipITIO~JS Specifies the syinmetry conditions, if any, that apply to the 
problem to be solved. 

MATER I A L 

PRESTRESS 

Specifies constitutive properties of the material. 

Specifies prestress data in the form of initial stress components. 

FIELD Specifies the location of field points at  which displacement and 
stresses are to be evaluated and printed later. 

Subroutine DEFINE. unlike CLEAR or STOP, branches as per the second keyword: 

* 
* Interpret DEF IIJE command 
* 

subroutine DEFINE 

imp1 i c it none 
character key*8, CCLVAL*8 
integer ICLTYP 
logical CMATCH 

if (ICLTYP(2) .le. 0) then 

* 

* 

print * ,  ’ * * *  kJo keyword after DEFINE’ 
return 

end if 

key = CCLVAL(2) 
if (CMATCH (key, ’B^OUFID’))  then 

elee if (CMATCH (key, ‘E-LEMEIITS’)) then 

else if (CMATCH (key, ’F-IELD’)) then 

* 

call DEFIME_BOU~JDARY_COHDITIOMS 

c all DEF IIJE-ELEMEHTS 

call DEF INE-FIELD-LOCATIONS 

B-13 



Appendlx 8: A DIRECT BOUNDARY ELEMENT PROCESSOR 

e l s e  i f  (CMATCH (key, 'M'ATERIAL' 1) then 

e l s e  i f  (CMATCH (key, 'P-RESTRESS')) then 

e l s e  i f  (CMATCH (key, 'SE-GMENTS')) then 

e l s e  i f  (CMATCH (key, 'SY'MMETRY')) then 

e l s e  

c a l l  DEFIME-MATERIAL 

c a l l  DEFIHE-PRESTRESS 

c a l l  DEFINE-SEGMENTS 

c a l l  DEFINE-SYMMETRY -CONDITIONS 

print  *, '*** I l l e g a l  or ambiguous keyword ', key, 
$ ' a f t e r  DEFIIJE ' 
end i f  
return 
end 

The program begins checking whether a keyword actually follows DEFINE. If so i t  compares 
them in the usual matter and calls appropriate input subroutines. These are described 
next. 

Defining Segments 

The DEFINE SEGMEHT command introduces a series of segment-definition commands which 
are expected to have the form 

SEGMENT = i BEG111 = 2, hcy ,y, bey END = x;nd,ytnd 

where z:eg,yfeg arc the s,y coordinates of the starting point of the i th segment, and 
zfnd, ytend are the r ,  y coordinates of the ending point,. The segment list is terminated by an 
END command that takes the control back to thc main program. 111 listing the coordinates, 
the following t>oundary traversal convention must be observed: a closed contour is traversed 
in the counterclockwise sense i f  the region of interest is outside the contour (a cavity 
problem), and in the clockziiise sense if the region of interest is inside the the contour (a 
finite body problem). 

For example, to define a 4-segment boundary that encloses a square region whose 
corner points are (o,O), ( 4 , 0 ) ,  (4 .4)  arid ( 0 , 4 ) ,  and which const,itutes the region of 
intercst, you say 

DEFINE SECMEIlTS 
SEG=l BEGII I=O,O EIlD=0.4 
SEG=2 BECIIJ=O, 4 EHD=4,4 
SEG=3 BEGIIJ=4,4 EIID=4 ,O 
SEG=4 BEGIN=4 .O EIID=O,O 
EIID 

(Segments may be actually defined in any order; t h e  is also no need to number them 
sequentially.) 

B-14 



$8.7 DEFINING THE PROBLEM 

The commands that enter the segment data, pius the END command, are call subor- 
dinate commands, because they can appear if arid only if the command DEFINE SEGMENT 
has been entered. The DEFINE SEGMENT command, which introduces the subordinate com- 
mands, is said to be the header commattd (it also goes by the names master command, 
parent comtnand, leader, etc.) 

The processing of the segment-definition commands is carried out within subroutine 
DEFINE -SEGMENTS: 

* 
* Read segment-definition data 
* 

subroutine DEFIME-SEGMENTS 

imp1 ic it none 
include 'SEGMENT.inc' 
character*8 key, CCLVAL 
integer ieeg, n, ICLTYP, ICLVAL, ICLSEK 

logical CMATCH 

* 

real xy(2) 

* 
1000 call CLREAD ( '  Segment data> ' ,  

s 
$ 'Terminate with END', 
$ ' '1 

' Enter SEG=iseg BEG=xbeg,ybeg END=xend,yend&&'// 

* 
if (ICLTYP(1) .le. 0) then 

print k ,  ' * * *  Command must begin with SEG or END' 
go to 1000 

end if 
key = CCLVAL ( 1 
if (CMATCH (key, 'E-ND')) then 

else if (CMATCH (key, 'S-EGMENT')) then 
return 

iseg = ICLVAL(2) 
if (ieeg .le. 0 .or. iaeg .gt. MAXSEG) then 
print *, '*** Segment number', iseg, ' out of range' 
go to 1000 

end if 
eegdef(ieeg1 = 1 
if (numel(iseg) .le. 0) nurnel(iseg) = I 
if (ICLSEK(3, 'B-EGIH') .ne. 0) then 

call CLVALF ( '  ' ,  2, xy, n) 
if (n .ge. 1) xbeg(ieeg1 = xy(1) 
if (n .ge. 2)  ybeg(iseg1 = xy(2) 

end if 
if (ICLSEK(3, 'E-ND') .ne. 0) then 

call CLVALF ( '  ' ,  2, xy, n) 
if (n .ge. 1) xend(iseg1 = xy(1) 
if (n .gee 2) yend(iseg) = xy(2) 

end if 

print * ,  ' * * *  Illegal keyword ' ,  key,' in segment data' 
else 

33-15 



Appendix B: A D I R E C T  B O U N D A R Y  E L E M E N T  P R O C E S S O R  

end if 
go to 1000 

end 

The structure of this subroutine is typical of those that handle subordinate commands. A 
“do forever” construction is headed by a CLREAD call, and the loop is escaped only when an 
END command is detected. Notice the different prompt and splash-line input arguments. 

This submutine provides an example of the use of the “search for keyword” function 
ICLSEK described in $5.2. A keyword match is followed by a value pair retrieval through 
the list-loading subroutine CLVALF described in $7.2. 

Note the careful handling of the case in which less than two values appear after either 
BEGIN or END. This facilitates table editing. For example, the command 

S=3 B=46.2 

resets XBEG(3) to 45.2; nothing else changes. 

gested in the exercise list that appears later in this Appendix. 
Several variations on the processing of the coordinate data are possible, and are sug- 

Digression on Subordinate Coniinands 

Why have we used subordinate commands rather than making the user type the segment 
in  the DEFINE command itself? Contrast the above definition of the square region with 
the following one: 

DEFINE SEGMENT=l BEGIN=O,O END=4,0 
DEFINE SEGMENT=% BEGIN=4,0 END=4,4 
DEFINE SEGMEIJTt3 BEGIN=4,4 END=O ,4 
DEFINE SEGMENT=4 BEGIN=0,4 END=O,O 

This is not too different in terms of typing effort, so the decision for adopting a one-level 
and a two-level structure i n  terms of number of keystrokes is marginal. But note that 
going to a two-Itvcil schernc we have effectivdy separated the action of selecting what to 
define, namely segments, fro111 the acttiul definition by entering coordinate valuee. This is 
a key aspect of ohject-oriented progrcrrnrnin,g: first select, then opemte. I r d  11s make this it 
command design principle: 

I I I I T r y  to separate selection from operation I I 
I I  I I  

If you are entering commands from a keyboard perhaps the advantages are not immediately 
apparent. But if you go to some form of interactive graphics input the advantages will be 
evident when you try to “cover” the commands through message-sending techniques. The 
user of such a graphic system will then see SEGMENTS in a “model definition” menu, and 
by pointing to it he or she is transported to another screen or window in which the process 
of entering the segments is actually carried out. 

B-16 



88.7 DEFINING THE PROBLEM 

Defining Elements 

By default, each segment contains only one boundary element (see logic of DEFINESEGMENT). 
I o  put more elernwits per segment you use the DEFINE ELEMENTS command. This intro- 
duces subordinate conimands of the fortn 

,. 

SEGMENT = z ELEMENTS = n 

where n is the number of boundary elerrierits in  the i th  segment. The data  are terminated 
by an END command. For the square region used as an example, let's say we want 10 BEs 
on segments 1 and 3, and 15 BEs on segments 2 and 4: 

DEFINE ELEMENTS 
SEG=l EL=lO : SEG-3 EL=10 : SEG-2 EL=16 : SEG=4 E L = l 6  ; END 

which illustrates the fact that  data may be entered in any order. The implementation 
shown below actually allows a more general command form: 

SEGMENTS = 21 , .  . . , ik ELEMENTS = n l ,  . . . , nk 

so that  segment i l  gets n l  elements, segment i z  gets n2, arid so on. The example above 
can be abbreviated to 

DEFIIIE ELEMENTS 
SEG=1:4  E L = 1 0 , 1 5 , 1 0 , 1 5  ; END 

For this simple Processor allowing a comriiarid like this is probably overkill. It is imple- 
mented in that  fashion only t,o illustrate the processing of variable length integer lists via 
CLVALI: 

* 
* Define number of (equally spaced) boundary element6 per segment 
* 

subroutine DEFINE-ELEMENTS 

imp1 i c i t 
include 

character*4 key, CCLVAL 
integer i, iseg, n, nseg 
integer 
integer ICLTYP , ICLSEK 
real FCLVAL 
logical CMATCH 

* 
none 
' SEGlrElJT . inc ' 

* 

iseglist (MAXSEC) , numeliet (MAXSEG) 

* 
1000 call CLREAD ( '  Element data> ' ,  

$ ' Enter SEG = il . . .  ik EL = nel, . . .  nek&&'// 
8 'Terminate with END') 

* 

B-17 



Appendix B: A DIRECT BOUNDARY ELEMENT PROCESSOR 

if (ICLTYP(1) .le. 0) then 
print * ,  ' * **  Command muet begin with keyword' 
go to 1000 

end if 
key = CCLVAL (1 
if (CMATCH (key, 'E-ND')) then 

else if (CMATCH (key, 'S-EG')) then 
call CLVALI ( '  ' ,  -MAXSEG, ieeglist, neeg) 
if (ICLSEK(0, 'E-LEM') .eq. 0) then 

return 

print * ,  '*** Keyword ELEMENTS ie mieeing' 
go to 1000 

end if 
call CLVALI ( '  ' ,  -MAXSEG. numeliet, n) 
do 2500 i = 1,neeg 

ieeg = ieegliet(i1 
if (ieeg .le. 0 .or. ieeg .gt. MAXSEG) then 

elee 

end if 

print *, ' ***  Segment number',ieeg,' out of range' 

numel(ieeg1 = max(numeliet(i), 1) 

2600 continue 
else 

end if 
print * ,  ' ***  Illegal keyword * ,  key,' in element data' 

go to 1000 
end 

If you can't follow the code, don't worry. It is more advanced than the typical input routine 
in DBEM2, so you can study it later. 

Digression: Simplifying Commalids 

Why didn't we allow element data to be specified in the same commands that define the 
segment geometry'? For example, we might have allowed commands such as 

SEG = 13 BEG = -1.50'3.53 EHD = 14.81.6.22 ELEM = 6 

The answer fit.s within anotlicr design priticipie: 

Keep commands simple 

Paraphrasing Einstein: A command should be as simple as possible, but no simpler. Or 
Saint-Exupery: you know that you have the  perfec t  commmd when you can't remove any- 
thing. 

Simplicity is an admirable general principle, but for our case something more specific 
appl i es : 

B-18 



$8.7 DEFINING THE PROBLEM 

Don’t mix persistent and volatile data in the same command 

The terms “persistent” and “volatile” are used in a relative sense to denote degrees of 
“changeability” of the data. For example, segment data are more persistent than element 
data, since presumably you want to solve a problem whose geometry is dictated by external 
requirements; typically by engineering considerations. On the other hand, the number of 
elements per segment is a judgment decision: the program user attempts to get satisfac- 
tory accuracy (more elements, more accuracy) with reasonable cost (more elements, more 
computer time). 

Frequently the number of elements is varied while keeping the segment data fixed; 
this is called a convergence study. So there are good reasons to separate the commands 
that define these two aspects. 

Defining Boundary Conditions 

Each segment may be given a different, boundary condition (BC) that involves any of the 
following stress/displacement combinations: 

BC Code Prescribed boundary values 
0 
1 
2 
3 

Shear stress us arid normal stress o n  
Shear displacenient us and riorrnal displacement un 
Shear displacement u,  and normal stress un 
Shear stress us and normal displacement u n  

These values are comtant along t,he segment? so they can be read on a segment-by-segment 
basis. The stress values are understood to be resultants over the segment. 

REMARK B . l  
The “BC codes” are related to those used by Crouch and Starfield. Using integer codes is far 
from the best way to iniplemerit readable software, but we shall follow their convention. 

The BC data commands are introduced by a DEFINE BOUNDARYXONDITIONS header com- 
mand (which may be abbreviated to just D B ) ,  and have the form 

I SEG = z {SS = ns 1 S D  = u.,} {NS = Un 1 HD = IL,} 

C terminated by an END command. Keyword SS means shear stress, S D  shear displacement, 

l 
and so on. 

In the CLAMP metalanguage, this means that one may specify either uB or ua ,  but 
not both simultaneously, and similarly for u, and u,. The specifications are shown in 
braces, meaning that they may not be omitted. 

If no BC is ever specified for segment i, that segment is assumed stress free (code 0 
with u8 = u, = 0). If only a normal value is prescribed, a zero shear stress is amumed, 
and so on. 

4 

B-19 



Appendlx B: A DIRECT BOUNDARY ELEMENT PROCESSOR 

The implemeri tat ion of DEFINE-BOUNDARY follows. 

* 
* Read boundary condition data f o r  segment8 

subroutine DEFINE-BOUNDARY-CONDITIONS 

implicit none 
include ’SEGMENT.inc’ 

character*4 key, CCLVAL, word(2) 
integer iseg, n, nw, iloc(2) 
integer ICLVAL, ICLSEK, ICLTYP 
logical CMATCH 

* 

C 

* 

* 
1000 call CLREAD ( ’  Bound-cond data> ’ , 

$ ’ Enter SEG=iseg {SS=sig-s I SD=u-s) {NS=eig,n I ND=u-n)’// 
$ ‘&&Terminate with END’) 

* 
if (ICLTYP(1) .le. 0) then 
print * ,  ’*** Command must begin with keyword’ 
go to 1000 

end if 
key = CCLVAL (1 1 
if (CMATCH (key, ’E-ND’)) then 

else if (CMATCH (key, ’S-EG’)) then 
return 

iseg = ICLVAL(2) 
if (ieeg .le. 0 .or. iseg .gt. MAXSEG) then 
print * ,  ’ ***  Segment number’, iseg, ’ is out of range’ 
go to 1000 

end if 
call CLOADK (’L’, -2, word, iloc, nw) 
call BCVALUES (iseg, nw, word, iloc) 

print * ,  ’ * **  Illegal keyword ’ ,  key, ’ in BC data’ 
else 

end if 
go to 1000 

end 

This illustrates the use of the “load keyword” entry points of $8.2. These calls search for 
keywords such as SS and move them to the subroutine work area. This simplifies keyword 
legality tests such as “SS and SD cannot appear in the same command.” To do these chores 
DEFINE-BOUNDARY calls subroutine BCVALUES: 

* 
* Store boundary condition valuee in table6 
* 

subroutine BCVALUES 
$ (ieeg, nw, word, iloc) 

* 

B-20 



$8.7 DEFINING THE PROBLEM 

implicit none 
include 
character* (.! 1 word(2) 
real FCLVAL 
integer ieeg. nw, iloc(2) 
integer code, i, ied, iloade, iloadn, ks, kd, kn 
logical CMATCH 

ke = 0 
k n =  0 
kd = 0 
ied = 0 
iloadn = 0 
iloade = 0 

do 2000 i = 1 .nw 

ke = ke + 1 
iloade = iloc(i) 

ke = ke + 1 
kd = kd + 1 
isd = 1 
iloads = iloc(i) 

k n =  k n + l  
iloadn = iloc(i) 

k n =  k n + 1  
kd = kd + 1 
iloadn = iloc(i) 

print * ,  ' * **  Illegal BC keyword ' ,  word(i),' eegment',ieeg 
return 

' SECMEHT . inc ' 

* 

* 

if (CMATCH (word(i), ' S S ' ) )  then 

elee if (CMATCH (word(i), 'SD' 1) then 

elee if (CMATCH (word(i), 'MS')) then 

elee if (CMATCH (word(i), ' I I D ' )  1 then 

elee 

end if 
if (h .gt. 1 .or. ke . g t .  1) then 

print * ,  ' ***  Illegal BC combination for segment', iseg 
return 

2000 continue 
end if 

* 
if (iloadn .gt. 0) bvn(ieeg) = FCLVAL(iloadn+l) 
if (iloads .gt. 0) bve(ieeg) = FCLVAL(iloade+l) 

if (kd .eq. 0) then 

elee if (kd .eq. 1) then 

* 

code = 1 

code = 3 
if (isd .eq. 0) code = 4 

code = 2 
elee 

end if 
kode(ieeg) = code-1 

I3-21 



Appendlx 6: A D I R E C T  B O U N D A R Y  E L E M E N T  PROCESSOR 

return 
end 

which embodies the logic for eventually storing the user-supplied values into appropriate 
spots in arrays BVS and BVN. 

Defining Symmetry Conditiolis 

If the problem exhibits symmetry conditions, commands to specify symmetry axes are 
introduced by the header comrriand DEFINE SYMMETRY -CONDITIONS (which may be abbre- 
viated to just D S) and have the form 

XSYM = xsym 
YSYM = ysym 

The XSYM command specifies that z = Z s y m  is a line of symmetry parallel to the z axis. 
The YSYM command specifies that y = Ysym is a line of symmetry parallel to the y axis. One 
or two specifications may be given. The Processor logic does not allow "skew" symmetry 
conditions, 

The implementation of the DEFINE-SYMMETRY routine is straightforward: 

* 
* Read symmetry condition data 
* 

subroutine DEFINE-SYMMETRY-CONDITIOIJS 

implicit none 
include ' SYMMETRY. inc ' 
character*4 key, CCLVAL. word(2) 
integer ixeym, iysym, ICLTYP 
real FCLVAL 
logical CMATCH 

ixsym = mod(ksym,2) 
iyeym = ksym/2 

* 

* 

* 
1000 call CLREAD ( '  Symmetry data> ' ,  

$ ' Enter XSYM=xsym or YSYM=ysym ' / /  
$ '&&Terminate with EUD') 

if (ICLTYP(1) .le. 0) then 
print * ,  @ * * *  Command must begin with keyword' 
go to 1000 

end if 

key = 
if (CMATCH (key, 'E-MD'))  then 

* 
CCLVAL ( 1 1 

ksym = 2*iysym + ixeym 
return 

else if (CMATCH (key, 'X-SYM')) then 

B-22 



5B.7 DEFINING T H E  P R O B L E M  

xeym = FCLVAL(2) 
ixeym = 1 

ysym = FCLVAL(2) 
iyeym = 1 

print :k, ’ ***  I l l ega l  keyword * ,  key, ’  i n  symmetry data’ 

e l s e  i f  (CMATCH (key, ’Y-SYM’)) then 

e l s e  

end i f  
go t o  1000 

end 

REMARK 8 . 2  

Here KSYM is an int,eger “symmetry flag” related to that used in the original TWOBI program. 

Defining Material Properties 

Material properties are introduced by a DEFINE MATERIAL header command (which can 
be abbreviated to just D M). T h e  commands have a simple form: 

EM = E 
PR = u 

terminated by an  END command. The E command specifies the elastic modulus and the PR 
command specifies Poisson’s ratio. Since DBEM2 is restricted to elastic isotropic materials 
and does not consider thermal effects, these two material properties suffice. 

The default values for E and u set by CLEAR are 1.0 and 0.0, respectively. 
The implementation of DEFINE MATERIALS is straightforward arid does not involve 

any fancy new construct: 

B-23 



Appendix 6: A D I R E C T  BOUNDARY ELEMENT PROCESSOR 

* 
* Read material property data 
* 

subroutine DEFINE-MATERIAL 

implic it none 
include 'MATERIAL. inc ' 
character*4 key, CCLVAL 
integer ICLTYP 
real FCLVAL 
logical CMATCH 

* 

* 
1000 call CLREAD ( '  Material data> ' ,  

s ' Enter EM=em or PR=prkk'// 
s 'Terminate with E N D ' )  

* 
if (ICLTYP(1) .le. 0) then 
print * ,  ' ***  Command muet begin with keyword' 
go to 1000 

end if 
key = 
if (CMATCH (key. ' E - N D ' ) )  then 

else if (CMATCH (key, 'EM')) then 

else if (CMATCH (key. ' P - R ' ) )  then 

else 

end if 

CCLVAL ( 1 ) 

return 

em = FCLVAL(0) 

pr = FCLVAL(0) 

print * ,  ' * * *  Illegal keyword ' ,  key,' in material data' 

go to 1000 
end 

Defining Prestress Data 

If the initial stress state has nonzero coniponwts., prestress data  have to be introduced by 
a DEFINE PRESTRESS header. 'The I)rctst,rcss-de~tlii,ion commands have a very simple form: 

sxxo = 6;z 

SYYO = aiy 

SXYO = a,, I> 

As usual, these commands are terminated hy an EHD command. Undefined prestress com- 
ponents are assumed zero. 

The implernentation of DEFINE-PRESTRESS is quite similar to t,hat of DEFINEMATERIAL : 

D-24 



gB.7 DEFINING THE PROBLEM 

* 
* Read preetrees (initial field stresses) data 
* 

eubrout ine DEFINE-PRESTRESS 

implicit none 
include ’PRESTRESS.inc’ 
character*4 key, CCLVAL 
integer ICLTYP 
real FCLVAL 
logical CMATCH 

* 

* 
1000 call CLREAD ( ’  Preetreae data> ’ ,  

t ’ Enter SXXO=sxxO, SYYO=syyO or SXYO=exyO&&’// 
r) ’Terminate with END’) 

* 
if (ICLTYP(1) .le. 0) then 
print * ,  ’*** Command must begin with keyword’ 
go to 1000 

end if 
key = 
if (CMATCH (key, ‘E-ND’)) then 

elee if (CMATCH (key, ’SX-XO’)) then 

else if (CMATCH (key, ‘SY-YO’)) then 

elee if (CMATCH (key, ’SX-YO’)) then 

elee 

end if 

CCLVAL ( 1 ) 

return 

exxO = FCLVAL(0) 

eyy0 = FCLVAL(0) 

sxyO = FCLVAL(0) 

print * , * * * *  Illegal keyword ’ ,  key,’ in prestreee data’ 

go to 1000 
end 

Defining Output Field Locations 

The last piece of i n p i i t  d a h  a r e  n o t  rclated to file prohlem definikion, h i t  to the specifica- 
tion of the field points a t  which the program user would like to get c o m p u t d  results, uh., 
displacements and stresses. 

REMARK 8 .3  

This set of information is characteristic of boundary element methods, in which all basic givens 
and unknowns are at the boundary. If you want, information at field points not. on the boundary, 
you have to ask for it and specify where. 

For convenience the output locations are not specified point by point, but as equally 
spaced points on line segments. You specify the location of the first and last point on the 
line, and the number of points, if any, to be “collocated” between the first and last one. 

B-25 



Appendlx B: A DIRECT BOUNDARY ELEMENT PROCESSOR 

The output field location specification commands are introduced by a DEFINE FIELD 
-LOCATIONS header command (which may be abbreviated to D F) arid have a form remi- 
niscent of the segment-definition commands: 

LAST = %!ast, yfaPt  [POINTS=ni,tI first first LINE = z FIRST = xi ,pi  

Here nint is the number of intermediate points to be inserted (equally spaced) between the 
first and last poIti1. If this phrase is omitted, nint = 0 is assumed so only the first and last 
points will be output. points. If tlie first and last points coincide, output will be a t  only 
one point. 

For example: 

DEF OUT 
LIME=l F=2(00.2 L=2(03.8 P=9 
LINE=% F=3.8,0.2 L=O.2,3.8 P-9 
END 

specifies two output lines running at 45" and 135", respectively, and with 11 output points 
(first+last+S) in each. 

Here is the iniplement,ation of the DEFINE-OUTPUT-LOCATIONS routine: 

* 
* Read location of output field points 

subroutine DEFINE-FIELD-LOCATIONS 

implicit none 
include ' OUTPUT. inc ' 
character*B key, CCLVAL 
real FCLVAL 
integer ilin, n, mark, ICLVAL, ICLSEK. ICLTYP 

logical onepoint, CMATCH 

* 

* 

real xy(2) 

* 
1000 call CLREAD ( '  Field location data> ' , 

$ 
$ ' [P=ninterl&&Terminate with EllD') 

' Enter LIN=ilin FIRST=xf irst ,yf irst LAST=xlaet , ylaet ' / / 

* 
if (ICLTYP(1) .le. 0) then 
print *, ' ***  Command must begin with keyword' 
go to 1000 

end if 
key = CCLVAL ( 1) 
if (CMATCH (key, ' E-IID ' then 

else if (CMATCH (key, 'L-IME' 1) then 
return 

ilin = ICLVAL(2) 
if (ilin .le. 0 .or. ilin .gt. MAXLIN) then 
print *, ' * * *  Field line number',ilin,' is out of range' 

B-20 



58.7 DEFINING THE PROBLEM 

go to 1000 
end if 
lindef(i1in) = 1 
nintop(i1in) = 0 
onepoint = .true. 
if (ICLSEK(3, 'F-IRST') .ne. 0) then 
call CLVALF ( '  ' ,  2, xy, n) 
if (n .ge. 1) xfiret(i1in) = xy(1) 
if (n .ge. 2) yfiret(ilin1 = xy(2) 

end if 
if (ICLSEK(3, 'L-AST') .ne. 0) then 
call CLVALF ( '  ' , 2 ,  xy. n) 
if (n .ge. 1) xlaet(i1in) = xy(1) 
if (n .Be. 2) ylaet(i1in) = xy(2) 
onepoint = .falee. 

end if 
if (onepoint) then 
xlaet (ilin) = xf iret (ilin) 
ylaet (ilin) = yf iret (ilin) 

end if 
if (ICLSEK(3, 'P^OINTS' ) .ne. 0) then 

end if 

print * ,  '*** Illegal keyword * ,  key,' in field loc data' f 

nintop(i1in) = max(ICLVAL(0) ,O) 

e1.e 

end if 
go to 1000 

end 
~~~~ ~~ 

The input data section is complete.

B-27

Appendix B: A D I R E C T BOUNDARY E L E M E N T PROCESSOR

sB.8 SOLVING THE PROBLEM

Having finished input data preparation, the three steps involved in solving the elastostatic
problem are as follows.

Building the Boundary Element Model. The input data has defined the geometry of the
problem in terms of segments. Segments are broken down into equally spaced boundary
elements. The first step consists of building element-by-element data, and is carried out
when you entei the coniniand BUILD.

Assembling the Discrete Equations. This step generates a matrix C of ‘‘influence coeffi-
cients” and a vector r of “forcing functions.” These arrays have dimensions equal to twice
the total number of boundary elements. The construction of the elements of C and r fol-
lows the direct formulation of boundary-integral methods and is not explained here. This
step is triggered by the command GEMERATE and is carried out by subroutine GENERATE
and subordinate routines.

Solving for the unknowns. The linear equation system Cx = r is solved (by a Gauss
elimination method) for vector x, which contains the boundary unknowns. This step is
triggered by command SOLVE and is carried out by subroutine SOLVE and a subordinate
routine.

Since we are not going t,o explain the theory behind these tasks, the BUILD, GENERATE and
SOLVE subroutines are listed next without commentary.

~~ ~ ~ ~ ~~ ~ ~~ ~ ~

*
* Build detailed boundary element data

subroutine BUILD

imp1 i c it none
include ‘SEGMENT.inc’
inc lude ‘ELEMENT.inc’
include ’ MATERIAL. inc ’
include ‘PRESTRESS.inc’
integer iseg, k, ne, num
real xd, yd, side

k = 0
do 2000 iseg = 1,MAXSEG

*

*

*

if (segdef(iseg1 .eq. 0) go to 2000
num = numel(ieeg)
xd = (xend(iseg1 -xbeg(iseg))hum
yd = (yend(iseg1 -ybeg(iseg) >/num
side = sqrt (xd**2+yd**2)

do 1500 ne = 1,num
if (side .eq. 0.0) go to 2000

k = k + l
if (k .gt. MAXELM) then
print *, ’ * * * Boundary element count exceede ’,MAXELM
print *, ’ Excess elements ignored’

B-28

58.8 SOLVING THE PROBLEM

return
end if
xme(k) = xbeg(ieeg1 + 0.6*(2.*ne-l)*xd
yme(k) = ybeg(ieeg1 + 0.6*:(2.*ne-l)*!yd
hleng(k1 = 0. S*eide
einbet(k1 = yd/eide
coebet(k) = xd/side
b(2*k-1) = bve(ieeg1
b(2*k 1 = bvn(ieeg1
kod(k) = kode(ieeg1

1600 continue
2000 continue

numbe = k
print ' (' @ Discrete model bui iing completed: ' ' ,

return
end

Calculate influence coefficient matrix and RHS vector

subroutine GENERATE

$ 15, ' ' boundary elements ' */I ' , numbe

imp1 ic it
include
include
include
include
integer
real
real
real

none
'MATERIAL. inc '
' ELEMENT. inc '
'PRESTRESS.inc'
' SYMMETRY. inc '
i, j
einbi, coebi, einbj, coebj, ee0, enO, g
xi. xj, yi. yj, sj
aee, a m , ane, ann, bee, ban, bne, bnn

g = 0.5*em/(l.+pr)
do 3000 i = 1,numbe
r(2*i-1) = 0 .
r(2*i 1 = 0.
xi = xme(i1
yi = yme(i)
coebi = coebet(i1
einbi = einbet(i1
do 2500 j = 1 ,numbe

aee = 0.0
aen = 0.0
ane = 0.0
ann = 0.0
bee = 0.0
ban = 0.0
bne = 0.0
bnn = 0.0
xj = xme(j)
yj = yme(j)
coebj = coebet(j1
einbj = einbet(j1

13-29

Appendlx B: A D I R E C T BOUNDARY ELEMENT PROCESSOR

ej =
esO = (syyO-exxO)*einbj*coebj + exyO*(coebj**2-einbj**2)
en0 = sxxO*einbj**2 - 2.*exyO*einbj*coebj + eyyO*coebj**2
call COEFF (xi, yi, xj, yj, ej,

hleng (j 1

I , em, pr, coebi, einbi, coebj, einbj,
ass, a m , ana, ann, bee. ben, bne, bnn)

if (keym .eq. 1 . o r . keym .eq. 3) then
call COEFF (xi, yi, 2.*xeym-xme(j), yj, ej,

-1, em, pr. coebi, einbi, coebj. -einbj.
ass, a m , ans, ann, bee, ben, bne, bnn)

end if
if (ksym .eq. 2 .or. keym .eq. 3) then

call COEFF (xi, yi, xj , 2.*yeym-yme(j), 81,

-1, em, pr, cosbi, einbi, -coebj. sinbj,
aee, asn, ans, ann, bee, ben, bne, bnn)

end if
if (ksym .eq. 3) then

call COEFF (xi, yi , 2. *xeym-xme(j , 2. *yeym-yme (j 1. e j ,
1 , em, pr, cosbi, einbi, -coebj, -einbj,
ass. a m , ana, ann, bee, ben, bne, bnn)

end if
c a l l SETUP (i, j , kod(j). g, eeO, snO,

ass, aen, ane, ann, bee, ben, bne, bnn,
b, c , r, 2*numbe, MAXEqS)

continue
continue

print * , 'Influence coefficient matrix 8 RHS vector generated'
return
end

Solve for unknown boundary values

subroutine SOLVE

imp1 i c it none
include ' ELEMENT. inc '
integer ising

call GAUSSER (c, r , x, 2*numbe, MAXEqS. ieing)
if (ieing .eq. 0) then

else

end if
return
end

*
*
*
*

*

print *, 'Discrete equations solved'

print * , 'Singularity detected at BE equation',ieing

Subroutine GENERATE calls COEFF (which is essentially the same as a TWOBI subroutine with
the same name) and SETUP, which fills the entries of the influence coefficient matrix and
right- hand-side vector:

*

46.8 SOLVING THE PROBLEM

*
*

Calculate source/receiver coefficients

subroutine COEFF
s (xi, yi, xj. yj, aj,
$ meym, em, pr, coebi. einbi, coeb, sinb,
$ ace, a m , ane, ann, bee, ben, bns, bnn)

*
imp1 ic it
real
real
real
real
integer
real
real
real
real
real

none
xi, yi, xj, yj, aj
em, pr, coebi, einbi, coeb, einb
aee, a m , ana, ann, bee, ben, bne, bnn
pi, con, prl, pr2, pr3
meym
cma, cpa, cxb, cyb, coeg, sing
rle, r2s. fll, f12
tbl, tb2. tb3, tb4. tb5
aeet, asnt, anet, annt
beet, bent, bnet, bnnt

pi = 4.*atan2(1. . l .)
con = i.O/(4.*pi*(l.-pr))
prl = l.-2*pr
pr2 = 2.*(1.-pr)
pr3 = 3.-4.*pr
cxb = (xi-xj)*coeb + (yi-yj)*sinb
cyb = -(xi-xj)*einb + (yi-yj)*coeb
coeg = coebi*coeb + sinbi*einb
sing = einbi*coeb - coebi*sinb

*
cma =
cpa =
rle =
r2e =
fll =
112 =
tb2 =
tb3 =
tbl =
tb4 =
tb6 =

cxb - aj
cxb + aj
cma**2 + cyb**2
cpa**2 + cyb**2
0.5*log(rle)
0.5*log(r2e)
-con* (f 11-f 12)
con* (atan2(cpa,cyb)-atan2(cma,cyb))
-cyb*tb3 + con*(cma*fll-cpa*fl2)
con* (c yb/rle -c yb/r2e)
con* (cma/r I s -cpa/r2s 1

aeet =
aent =
anet =
annt =

pr2:kcoeg*tb3 + prl*eing*tb2 + cyb*(eing*tb4+corg*tbS)
-prl*coeg*tb2 + pr2*sing*tb3 + cyb*(coeg*tb4-eing*tbS)
-pr2*eing*tb3 + prl*cosg+tb2 + cyb*(coeg*tb4-sing*tbS)
prl*eing*tb2 t pr2*coeg*tb3 - cyb*(eing*tb4+coeg*tbS)

beet =
bent =
bnet =
bnnt =

pr3*coeg*tbl + cyb* (eing*tb2-cosg*tb3)
pr3*eing*tbl + cybr (coeg*tb2+sing*tb3)
-pr3*eing*tbl + cyb* (coeg*tb2+eing*tb3)
pr3*coeg*tbl - cyb* (sing*tb2-cosg*tb3)

aee = aee + meym*aeet
asn = a m + aent

B-31

Appendlx B: A DIRECT BOUNDARY ELEMENT PROCESSOR

ane = ana + meym*anet
ann = ann + annt

bee = bee + meym*best
bsn = ban + bent
bne = bne + meym*bnet
bnn = bnn + bnnt
return
end

Set up influence coeff matrix and RHS of discrete eyetem

subroutine SETUP
s (i, j , bckodj, g, seO, enO.
s ass, aen, ane. ann,
s bee, bsn, bne, bnn,
s b, c, r, n. nc)

imp1 i c it none
integer i, j, n, nc, bckodj
real esO, enO, g, be, bn
real ass, asn. ana. ann, bas. ban, bne. bnn
real b(*), c(nc,*). r(*)

if (bckodj .eq. 0) then
c(2*i-1,2*j-l) = aee
c(2*i-1,2*j 1 = a m
c(2*i ,2*j-l) = ana
c(2*i ,2*j 1 = ann
be = 0.5*(b(2* j -1) -eeO)/g
bn = 0.5*(b(2*j)-enO)/g
r(2*i-1) = r(2*i-l) + bes*bs + ben*bn
r(2*j,) = r(2*i) + bne*bs + bnn*bn

c (2*i- 1,2+ j -1) = -bas
c(2*i-1,2*j) = -ban
c(2*i ,Z*j-l) = -bna
c(2*i ,2*j) = -bnn
r(2*i-1) = r(2*i-1) - ase*b(2*j-l) - aen*b(2*j)
r(2*i) = r(2*i) - ana*b(2*j-l) - ann*b(l*j)

c(2*i-1,2*j-l) = -bee
c(2*i-1,2*j 1 = a m
c(2*i ,2*j-1) = -bns
c(2*i ,2*j 1 = ann
bn = 0.5*(b(2*j)-snO)/g
r(z*i-l) = r(2*i-1) - aee*b(2*j-l) + ban*bn
r(2+i) = r(2*i) - ans*b(2*j-l) + bnn*bn

c (2*i- i,2* j - 1) = ass
~(2*i-1,2*j) = -bsn
c(2*i ,2*j-i) = ans
c(2*i ,2*j 1 = -bnn

else if (bckodj .eq. 1) then

elre if (bckodj .eq. 2) then

else

B-32

$6.8 SOLVING THE PROBLEM

be =
r(2*i-l) = r(2*i-l) + bee*be - aen*b(2*j)
r(2*i) = r(2*i 1 + bns*bs - ann*b(2*j)

0 . 6 * (b(2* j - 1) -ssO) /g

end if
return
end

SOLVE calls CAUSSER, which is a naive implementation of unsymmetric Gauss elimination
without pivoting:

*
* Solve algebraic equation eyetem A x = b by Gauee elimination

eubroutine GAUSSER
*

$ (a, b, x . n, na, ising)

none
*

imp1 i c i t
integer n, na. ising
real aha,*), b(*), x (*) , c, eum
integer i, j . k

i e i q = 0
do 2000 j = 1.n-1

ieing = j
return

*

if (a(j,j) .eq. 0.0) then

end if
do 1600 k = j+l,n

c = a(k,j)/a(j,j>
do 1400 i = j.n

a(k,i) = a(k,i) - c*a(j,i)
1400 continue

1600 continue
2000 continue

b(k) = b(k) - c*b(j)

*
x (n) = b (n) /a (n ,n>
do 3000 j = n-1,l.-1

sum = 0.0
do 2600 i = j+l,n

mum = Bum + a(j,i)*x(i)
2600 continue

3000 continue
return
end

x(j) = (b(j)-eum)/a(j,j)

(The only redeeming quality about GAUSSER is that the code is quite short; in fact, it’s
about the shortest possible implementation of a linear equation solver.)

B-33

Appendlx B: A D I R E C T B O U N D A R Y E L E M E N T PROCESSOR

5B.9 PRINTING DATA

One area in which the interactive operation excels is data display. If you are using an
interactive Processor for a engineering design task, you can selectively trim the otherwise
voluininous output to the important essentials. Conversely, if you are debugging a new
or modified implementation, you may want more output than is normally required; for
example, printing the influence coefficient matrix.

What app!ies for printed output applies with equal force to graphic output. We are
not going to illustrate graphic displays here, however, since the details depend strongly on
the output device and the plotting software you are using.

The PRINT command is similar to the DEFINE command in that it takes a second
keyword that specifies what is to be printed:

SEGMENTS

BOUNDARY XOND I TI OMS

SYMMETRY -COND IT1 ONS

MATERIAL

PRESTRESS

FIELD-LOCATIONS

ELEMENTS
,
I

COEFFICIENTS ~

~

RHS

I

,
SOLUTION

I

RESULTS

Prints segment geometry data and number of elements per seg-
ment.

Prints boundary condition (BC) code and prescribed boundary
values for each segment.

Prints symmetry conditions if any are in effect.

Prints material property data.

Prints prestress data.

Prints information about output-location lines if any are de-
fined.

Prints detailed boundary-element data produced by subroutine
BUILD (this is primarily for debugging).

Prints the matrix C of influence coefficients assembled by
GENERATE (this is primarily for debugging).

Prints the right-hand side (forcing) vector r assembled by
GENERATE (this is primarily for debugging).

Prints thc soliifion wrtor x calculatc?d by SOLVE (this is pri-
marily for debugging).

Print stresses and displacements at boundary-element mid-
points or at output field locations, depending on a command
qualifier.

The PRINT command is processed by subroutine PRINT, which has a “case” structure similar
to that of subroutine DEFINE:

B--34

sB.9 PRINTING DATA

*
* Interpret PRINT command
*

subroutine PRINT

implicit none
character key*8, CCLVAL*8
integer ICLTYP
logical CMATCH

if (ICLTYP(2) .le. 0) then

*

*
call CLREAD (' PRINT what? ' ,

$ ' BOUNDARY, ELEMENTS, COEFFICIEIdTS , ' //
$ 'FIELD, MATERIAL, PRESTRESS&&'//
$ 'RESULTS, RHS, SOLUTION, SYMMETRY')

key = CCLVAL(1)

key = CCLVAL(2)
else

end if
if (CMATCH (key, 'B-OUNDARY ' 1) then
call

else if

call
else if

call
else if

call
else if

call
else if

call
else if

call
elme if
call

else if
call

else if
call

else if
call

else
print

end if
return
end

$

PRIIIT-BOUND ARY -COND IT IONS
(CMATCH (key, 'C-OEFFICIENTS') .or.
CMATCH (key, 'I-NFLUENCE')) then
PRINT- INFLUENCE-COEFFIC IENTS
(CMATCH (key. 'E-LEMENTS')) then
PRINT-ELEMENTS
(CMATCH (key, 'F-IELD')) then
PRINT-FIELD-LOCATIONS
(CMATCH (key, 'M-ATERIAL')) then
PRINT-MATERIAL
(CMATCH (key, 'P-RESTRESS')) then
PRIIIT-PRESTRESS
(CMATCH (key, 'RE-SULTS'))
PRIIJT-RESULTS
(CMATCH (key, 'RHS'))
PR I NT-RHS-VECTOR
(CMATCH (key. 'SE-GMEMT'))
PRINT-SEGMENTS
(CMATCH (key, 'S-OLUTION'))
PRIIIT~SOLUTIOII~VECTOR
(CMATCH (key, 'SY'MMETRY'))
PR I IIT-SYMMETRY - COND IT IOIJS

*, '*** Illegal or ambiguous

then

then

then

then

then

keyword ' ,key, ' after PRINT'

Subroutine PRINT provides our first (and only) example of an implementation that prompts
for missing data. If you type only the keyword PRINT followed by a carriage return, you
will see the prompt

B-35

Appendlx B: A D I R E C T BOUNDARY E L E M E N T PROCESSOR

Print what?

on the screen, and you are supposed to type the next keyword, e.g., SEGMENTS that you for-
got. (Notice that this friendly technique was not used for the DEFINE command explained
in 5B.7; instead subroutine DEFI1,JE complains about missing keywords after DEFINE.)

Next we examine the subordinate routines.

Printing Input Data

The implementation of the subroutines that print segment, boundary condition, symmetry,
material, prestress, and field-location data are straightforward and so are simply listed next
as a group:

~ ~ ~~~

*
* Print segment data
*

subroutine PRINT-SEGMENTS

imp1 i c it none
include ' SEGMENT. inc '
integer i, k

k = 0
do 2000 i = 1,MAXSEG

*

*

if (segdef(i) .gt. 0) then
if (k .eq. 0) then

print '(/A/A6.A9,4A12)'.
$ ' Boundary Segment Data',
$ 'Segm', 'Elements', 'Xbeg', 'Ybeg', 'Xend', 'Yend'

end if
k = k + l
print '(16,19,3X,4Gl2.4)',

$ i, numel(i), xbeg(i), ybeg(i), xend(i), yend(i1
end if

2000 continue
if (k .eq. 0) then

print * , 'Segment tables are empty'
end if
print * , ' '
return
end

Print boundary data in response to a PRINT BOUNDARY command

subroutine PRIHT-BOUHDARY -COIJDITIOlIS

implicit none
include 'SEGMENT.inc'

integer i, k
character*9 given(0: 3)

*
*
*
*

*

13-36

5B.9 PRINTING DATA

data given /'SS and NS', 'SD and I J D ' , 'SD and NS', 'SS and ND'/

k = 0
do 2000 i = 1,MAXSEG

*

if (eegdef(i1 .gt. 0) then
if (k .eq. 0) then
print ' (/A/A6,All,2A12) ' ,

$ ' Boundary Conditione Data', 'Segm',
s 'Given'. 'Shear', 'Normal'

end if
k = k + l
print '(15,1X,A11,3X,lP2GI2.3)',

$ i, given(kode(i)), bve(i), bvn(i)
end if

2000 continue
*

if (k .eq. 0) then
print *, 'Boundary tablee are empty'

end if
print * , ' '
return
end

*
* Print eymmetry data
*

eubroutine PRINT-SYMMETRY-CONDITIONS

impli c it none
include 'SYMMETRY. inc '

print '(/A)', ' Symmetry Data'
if (keym .eq. 3) then

*

*

print *, 'Symmetry about axis X=',xeym
print *, ' and axis Y=',yeym

print * , 'Symmetry about axie X=',xsym

print * , 'Symmetry about axie Y=',ysym

print * , 'Ho eymmetry conditione'

else if (ksym .eq. 1) then

elee if (keyrn .eq. 2) then

elee

end if
print *. ' '
return
end

*
* Print material property data
*

eubrout ine PRINT-MATER1 AL

implicit none
include 'MATERIAL. inc '

print '(/A)', ' Material Property Data'

*

*

B-37

Appendlx 6: A D I R E C T B O U N D A R Y E L E M E N T P R O C E S S O R

print ' (" Elastic modulus:",lPE12.3)', em
print ' (" Poieeon""s ratio:",Fl2.3)', pr
print *, ' '
return
end

*
* Print field location data
*

subroutine PRINT-FIELD-LOCATIONS

implicit none
include '0UTPUT.inc'
integer i, k

k = 0
do 2000 i = 1 ,MAXLIlI

*

*

if (lindef(i) .gt. 0) then
if (k .eq. 0) then
print '(/A/A6,AQ,AQ,3A12>',

$ ' Field Location Data',
$ 'Line', 'Int.Pts', 'x-first', 'y-firet',
$ ' x - l a s t ' , ' y - l a s t '

end if
k = k + l
print '(16,19,4G12.4)',

$ i, nintop(i), xfirst(i), yfiret(i1, xlast(i). ylaet(i)
end if

2000 continue
*

if (k .eq. 0) then
print * , 'FIELD Location Tablee are empty'

end if
print * , ' '
return
end

Debug-Oriented Print Commands

The PRINT ELEMEHTS, PRIIJT COEFFICIEbITS, PRINT RHS and PRINT SOLUTION are
det,ailecl print commands pr imari ly i iscfii i in clchiig situations. They are implemented in
the following subroutines:

*
* Print detailed boundary element data

eubroutine PRINT-ELEMENTS

imp1 ic i t none
* include ' SEGMEMT . inc '

include ' ELEMENT. inc '
integer m

*

c

*

B-38

SB.9 PRINTING DATA

if (numbe .le. 0) then
print *, 'Boundary element table empty'
return

end if
print '(/A/A5,A8,2All,A12,A8,AQ,Al2)',

$ Boundary Element Data',
s 'Elem', 'Xmid', 'Ymid', 'Length',
s 'Orient', 'BCode', 'Shear', 'Normal'
do 2000 m = 1,numbe

print '(15,lP3G11.3,OPF10.2,16,1P2G12.3)',
$ m,xme(m) ,yme(m) ,2.*hleng(m),
s (180./3.1415826S)*atan2(sinbet(m) ,coebet(m)),
s kod(m), b(2*m-1) ,b(2*m)

2000 continue
print *, * '
return
end

*
*
*
*
*
*

*
*
*

*
*

*
*
*

*

*

Print influence coefficient matrix

subroutine PRIIIT-INFLUENCE-COEFFICIENTS

i mpl i c it
include ' SEGMENT. inc '
include ' ELEMENT. inc '

none

print ' (/A) ' , ' Influence Coefficient Matrix'
call PRIlIT-REAL-MATRIX (c , MAXEQS, 2*numbe, 2*numbe)
print *, ' '
return
end

Print right hand eide vector

subroutine PRINT-RHS-VECTOR
imp1 ic it none
include ' SEGMENT. inc '
inc lude 'ELEMENT.inc'

print '(/A)', ' Right Hand Side (Forcing) Vector'
call PRIIIT-REAL-MATRIX (t, 1. 1 , 2*numbe)
print *, ' '
return
end

Print right hand eide vector

subroutine PRINT-SOLUTIOll-VECTOR
implicit none
include ' SEGMENT. inc '
inc lude ' ELEMENT. inc '

print '(/A)', ' Solution Vector'

B-39

Appendlx 6: A D I R E C T BOUNDARY E L E M E N T PROCESSOR

call PRIIIT-REAL-MATRIX (x, 1, 1, 2*numbe)
print *, ’ ’
return
end

The previous three subroutines call PRINT-REALMATRIX, which is a “no frills” array printer:

*
* Print real matrix (or vector) in 6-column template
*

subroutine PRINT-REAL-MATRIX
$ (a, na, m, n)
integer na, m, n, i, j , jref
real a(na,*)
do 4000 jref = O.n-1,6
print ’ (1 X ,8112) ’ , (j , j = jref +1 ,min(jref +6,n))
do 3000 i = 1,m
print ’ (14,1P6E12.4) ’ , i , (a(i, j 1, j = jref +1 ,min(jref +6,n))

3000 continue
4000 continue

return
end

B 4 O

gB.9 PRINTING DATA

Printing Results

c

The PRINT RESULTS command without a qualifier lists stresses and displacements
computed at boundary element midpoints. If qualifier FIELD appears, the command
refers to the field points previously defined. This switch is implemented in subroutine
PRINT RESULTS:

*
* Proceee PRINT RESULTS command
*

eubrout ine PRINT-RESULTS

implic it none
integer ICLSEQ

if (ICLSEq(3,'F-IELD') .eq. 0) then

else

end if
return
end

*

*

call PRIITT-BOUIJDARY-RESULTS

call PRINT-FIELD-RESULTS

The code above provides an example of the use of ICLSEq to test for the existence of a
specific qualifier, in this case FIELD.

REMARK 8.4

Admittedly the use of a qualifier here i s somewhat contrived, for using the command form PRINT
RESULTS FIELD would he perfectly acceptable. The qualifier form is merely selected only to
illustrate the use of ICLSEq. Generally speaking, the use of qualifiers is appropriate only for more
complex Processors t,han DBEM2.

Printing Boundary Results

This is done by subroutine PRINT-BOUNDARY -RESULTS, the implementation of which is
straightforward:

*
* Print etreesee and displacement Q boundary element midpointe

eubrout ine PRINT-BOUIJDARY-RESULTS

implicit none
include
include
include 'MATERIAL.inc'
include 'PRESTRESS.inc'
integer k
real g, eeO, snO, sinbi, cosbi
real us, un, ux, uy, sign, sigs

*

*

' SEGMEMT . inc '
' ELEMENT . inc '

B-41

Appendix B: A D I R E C T BOUNDARY ELEMENT PROCESSOR

then

*
print ' (/ A) ' , * Displacements and Stresses at'//

' Boundary Element Midpoints'
print '(A5,AQ.SAll)'. 'Elem'. 'u-8'. 'u-n', 'u-x , u-y',

g = O.S*em/(l.+pr)

do 2000 k = 1.numbe
US = ~(2*k-1)
un = x(2*k)
sige = b(2*k-1)
sign = b(2*k)
if (kod(k) .eq. 1)

~n = b(2*k-1)
us = b(2*k)
sige = x(2*k-l)
sign = x(2*k)

I .

$

$ 'sig-e', 'eig-n'

*

else if (kod(k) .eq. 2) then
UB = b(21ck-l)
sige = x(2*k-l)

un = b(2*k 1
sign = b(2*k 1

end if
sinbi = sinbet(k)
coebi = cosbet(k)
ux = us*cosbi - un*sinbi
uy = us*sinbi + un*cosbi
print '(16,1P6G11.3)', k, us,un,ux.uy,eigs,eign

else if (kod(k) .eq. 3) then

2000 continue
print *, ' '
return
end

Printing Field Results

Showing displacements and stresses at field points is complicated by the fact that, unlike
finite element programs, such values are not readily available but must be calculated aa part
of the display procedure. This will become evident as one shows the coding of subroutine
PRIIIT-FIELD-RESULTS :

*
* Print stresses and displacements CD specified field points

Subroutine PRINT,FIELD-RESULTS

imp1 i c i t
include ' OUTPUT. inc '
integer m, p, points
real xp, yp, ux , uy, sigxx, sigyy, eigxy. f
logical skip

*
*

none

*

,

B-42

~~ ~

SB.9 PRINTING DATA

print '(/A)', @ Displacements and Stresses at'//
$ * Specified Field Points'

*
do 3000 m = 1 ,MAXLII?

if (lindef (m) .eq. 0) go to 3000
print '(A5,2AlO,A8,4All)', ' Lin', 'x', 'y', *u-x', 'u-y',

points = nintop(m1 + 2
if (xfiret(m) .eq. xlaet(m1 .and.

f = 0.0
do 2000 p = 1,points

8 'eig-xx', 'Big-yy', 'eig,xy'

$ yfiret(m) .eq. ylast(m)) points = 1

if (points .gt. I) f = real(p-l)/(points-l)
xp = xfirst(m)*(I.O-f) + xlaet(m)*f
yp = yfirst(m)*(i.O-f) + ylaet(m)*f
call
if (skip) then

FIELDP (xp, yp. ux, uy, sigxx, sigyy, eigxy, skip)

print '(16,2F10.3,8X,A)', m, xp,yp,
$ 'Point is too close to boundary'

else
print '(16.2Fl0.3,1P5Gll.3)', m , xp,yp, ux,uy,

$ sigxx,sigyy,eigxy
end if

2000 continue

3000 cont inue
return
end

print * , ' '

Subroutine FIELDP receives the location XP , YP of the field point and returns the displace-
ment componerits u , and uy, arid the stress co~nporients o,,, oyy and ozy:

*
* Compute etreseee and displacements at field point

subroutine FIELDP
*

$ (xP* YPo
$ ux, uy, sigxx, sigyy, sigxy, skip)

*
implicit

* include
inc lude
inc lude
inc lude
include
real
logical
real
real
real
real
real
real

none
'SEGMENT. inc '
' ELEMENT. inc '
'MATERIAL. inc '
' SYMMETRY. inc '
'PRESTRESS.inc'
xp, yp, us, un, ux, uy, eigxx, sigyy, eigxy
skip
uxus, uxun, uxss, uxsn
uyue, uyun, uyee, uysn
sxxus, sxxun, BXXBS, exxsn
eyyue, syyun, syyss, eyyen
sxyue. exyun, exyes. sxysn
xj, yj, ej, cosbj, sinbj

B-43

Appendix B: A DIRECT BOUNDARY ELEMENT PROCESSOR

real uej, unj, sej, snj, sag, sng
real g, eeO. snO
integer j *
skip = .false.
ux = 0.0

sigxx = sxx0
eigyy = syy0
sigxy = sxy0
g = O.5*em/(i. +pr)

do 2000 j = 1,numbe

uy = 0.0

*

uxus = 0.0
uxun = 0.0
uxss = 0.0
uxsn = 0.0
uyun = 0.0
uyun = 0.0
uyss = 0.0
uysn = 0.0
sxxus = 0.0
sxxun = 0.0
sxxss = 0.0
sxxsn = 0.0
eyyus = 0.0
syyun = 0.0
eyyes = 0.0
syyen = 0.0

sxyun = 0.0
sxyss = 0.0
exyen = 0.0
xj = xrne(j)
yj = yrne(j)
ej = hleng(j)
if ((xp-xj)**Z+(yp-yj)**2 .le. (sj)**2) then

SXyUB = 0.0

skip = .true.
return

end if
coabj
sinb j
sso =
en0 =
call

$
$
$
s
$
$

= cosbet(j)
= sinbet(j)
(syyO-sxxO)*sinbj*cosbj t sxyO*(coebj**2-~inbj+*2)
exxO*sinbj*+2 - 2.*sxyO*sinbj*cosbj + syyO*cosbj**2

S O M I G L I A N A (xp, yp, xj , yj , sj ,
I, em, p r , cosbj, sinbj.
uxus, uxun, uxss, uxsn,
uyus, uyun, u p s , uysn,
sxxus. sxxun, SXXSB, sxxsn,
SYYUB, syyun, eyyss. syyen,
sxyus, sxyun, sxyss , exyen)

if (ksym . e q . 1 .or. ksym .eq. 3) then
call SOMIGLIAIJA (xp, yp, 2. *xeym-'xme (j 1. yj , j .

8-44

~ _ _ _ ~ ~~~

§B.9 PRINTING DATA

$ -1, em, pr, coebj, -einbj,
$ UXUB, uxun, uxee, uxen,
3 uyue, uyun, uyes. uyen,
$ BXXUB, exxun, exxee, exxen,
$ eyyus, eyyun, eyyee, eyyen,
$ exyue, exyun. exyes, exyen)

end if
if (keym .eq. 2 .or. keym .eq. 3) then

call
$ -1, em. pr, -coebj, einbj,
$ uxue, uxun, UXBS, uxen,
$ uyue, uyun, uyes, uysn,
$ exxue, exxun, BXXBB, exxen,
$ eyyue, eyyun, eyyee, eyyen,
3 exyue, exyun. exyee, exyen)

end if
if (keym .eq. 3) then

call SOMIGLIANA (xp, yp, 2. *xsym-xme (j) , 2. *yeym-yme(j , e j ,
3 1, em, pr, -coebj, -sinbj,
$ uxue. uxun, uxee, uxen,
3 uyue , uyun, uyee, uyen,
$ BXXUB, exxun, exxee, exxen.
$ eyyue, ~ y y u n , myyes, Byyen,
3 exyue , sxyun, exyee , exyen)

SOMIGLIANA (xp, yp, x j , 2. *yeym-yme(j 1, e j ,

end it
uej = x(2*j-l)

eej = b(2*j-1) - eeO
enj = b(2*j - en0
if (kod(j) .eq. 1) then

uej = b(2*j-1)
unj = b(2*j)
eej = x(2*j-i)
enj = x(2*j)

usj = b(2*j-l)
eej = x(2*j)

unj = b(2*j)
enj = x(2*j)

unj = x(2*j 1

elee if (kod(j) .eq. 2) then

elee if (kod(j) .eq. 3) then

end if
seg = 0.5*esj/g
eng = 0.5*enj/g
ux = ux + uxue*uej + uxun*unj + uxse*ssg + uxen*eng
uy = uy t uyue*uej + uyun*unj + uyse*eeg + uyen*eng

unj = 2.*g*unj
eigxx = sigxx + exxue*uej + exxun*unj t exxee*eej + exxen*enj
eigyy = eigyy + eyyus*uaj + syyun*unj + eyyse*esj + eyyen*enj
eigxy = eigxy + exyue*uej + exyun*unj + exyse*eej + exyen*enj

usj = 2.*g*uej

2000 continue
return
end

23-45

Appendix 6: A D I R E C T BOUNDARY E L E M E N T PROCESSOR

Finally, FIELDP calls subroutine SOMICLIANA to evaluate the irnportant boundary-on-field-
point influence coeficients:

*
* Calculate field influence coefficients from Somigliana’e formula

subroutine SOMIGLIAllA
*

$ (x, y, xj, yj, aj, meym, em, pr, coeb. einb,
$ UXUB, uxun, UXBB, uxen,
$ UYUB, uyun, UYBB, uyen,
$ exxue, exxun, BXXBB, exxen,
$ BYYUB. eyyun. eyyee. syyen,
$ ~ X Y U B , exyun, ~ X Y B B , exyen)

*
implicit none
real x, y , xj, yj, aj, em, pi, coeb, sinb
real UXUB, uxun, UXBB, uxen
real UYUS, uyun, uyss, uyen
real BXXUB, exxun, SXXBB. exxen
real eyyus, Byyun, eyy~s, eyyen
real exyue, exyun. BXYSB. sxyen
integer meym
real pi, con, prl, pr2, pr3
real cxb, cyb, coeg, eing, cpa, cma
real rle, r2t3, fll, 112
real tbl, tb2, tb3, tb4, tb5, tb0, tb7
real uxust, uxunt, uxeet, uxent
real uyuet, uyunt, uyset, uysnt
real BXXUBt, BXXUIlt, BXXBBt, BXXBnt
real ByyUSt, Byyunt, ByyBSt, ByyBnt
real exyuet, axyunt, exyeet, exyent
real coeb2, einb2, cosab, sin2b

pi = 4.*atan2(1. , l e)
con = 1.0/(4.*pi*(l.-pr))
prl = 1.-2*pr
pr2 = 2.*(l.-pr)
pr3 = 3.-4.*pr

cxb = (x-xj)*coeb + (y-yj)*sinb
cyb = -(x-xj)!*einb + (y-yj)*coeb

cma = cxb - aj
cpa = cxb + aj
rls = cma**2 + cyb**2
r2e = cpa**2 + cyb**2
fll = 0.5*log(rls)
f12 = 0.5*1og(r2e)
tb2 =
tb3 = con*(atan2(cpa,cyb)-atan2(cma,cyb))
tbl =
tb4 = con*(cyb/rls-cyb/r2e)
tb6 = con*(cma/rle-cpa/r2s)

*

*

*

-cond; (f 11 -f 12)

-cyb*tb3 + con*(cma*f 11-cpa*f 12)

5B.9 PRINTING DATA

.

tb6 = con*(~cma**2-cyb**2)/rle**2-(cpa**2-cyb**2)/r2e**2)
tb7 = -con*2.*cyb*(cma/rle**2-~pa/r2e**2)

uxuet =
uxunt =
uxeet =
uxent =
uyuet =
uyunt =
UyeEt =
uyent =

prl*einb*tb2 - pr2*coeb*tb3 + cyb* (einb*tbl-coeb*tbS)
prl*coeb*tb2 + pr2*einb*tb3 - cyb* (coeb*tb4+einb*tbS)
pr3*coeb*tbl - cyb*(einb*tb2+coeb*tb3)
-pr3*e inb* tb 1 + c yb* (coeb* tb2- einb*tb3)
-prl*coeb*tb2 - pr2*einb*tb3 - cyb*(coeb*tb4+einb*tbS)
prl*einb*tb2 - pr2*coeb*tb3 - cyb*(einb*tb4-coeb*tbS)
pr3* einb* tbl + c yb* (co eb*tb2- einb*tb3)
pr3*coeb*tbl + cyb*(einb*tb2+coeb*tb3)

coeb2 = coeb*coeb
einb2 = einb*einb
coe2b = coeb2-einb2
ein2b = 2.*einb*coeb

exxurt = 2.*coeb2*tb4 + ein2b*tb5 - cyb*(coe2b*tb6-ein2b*tb7)
eyyuet = 2.*einb2*tb4 - ein2b*tb6 + cyb*(coe2b*tb0-ein2b*tb7)
exyuet = ein2b*tb4 - coe2b*tb5 - cyb*(ein2b*tb0+coe2b*tb7)
exxunt = -tb5 - cyb*(sin2b*tb0+coe2b*tb7)
eyyunt = -tb5 + cyb*(ein2b*tb6+cos2b*tb7)
exyunt = cyb* (coe2b*tbS-~in2b*tb7)
exxeet = -tb2 - pr2*(coe2b*tb2-~in2b*tb3)

$ + cyb* (coe2b*tb4+ein2b*tbS)
eyyeet = -tb2 - pr2* (cos2b*tb2-ein2b*tb3)

$
exyeet = - pr2* (sin2b*tb2+coe2b*tb3)

$ + cyb*(ein2b*tb4-~oe2b*tbS)
exxent = -tb3 + prl*(ein2b*tb2+coe2b*tb3)

s
eyymnt = -tb3 - prl*(sin2b*tb2+cos2b*tb3)

s - cyb* (ein2b*tb4-coe2b*tb5)
exyent = - prl*(coe2b*tb2-ein2b*tb3)

- c yb* (co e2b* t b4 +e in2b*t b5

+ c yb* (ein2b* tb4 -c os2b*tb5

$

uxue =
uxun =
uxee =
uxen =
uyue =
uyun =
uyee =
uyen =

exxus =
exxun =
exxee =
exxen =
eyyue =
eyyun =

evven =
Eyyee e

- cyb*(coe2b*tb4+ein2b*tb5)

uxue +
uxun +
uxee +
uxen +
uyue +
uyun +
uyee +
uyen +

meym*uxuet
uxunt
msym*uxset
uxsnt
meym+uyust
uyunt
meym*uyest
uysnt

exxu8 + meym*exxuet
exxun + exxunt
sxxee + meym*exxeet
exxen + exxent
eyyue + meym*eyyust
syyun + eyyunt
eyyee + meym*eyyeet
eyyen + eyyent

B-47

Appendlx B: A D I R E C T B O U N D A R Y E L E M E N T PROCESSOR

exyue = ~ X Y U B + meyrn*exyuet

exyee = s x y e e + msym*sxyeet
exyen = exyen + exyent

return
end

8XyUIl = S X Y U n + BXyUIlt

*

The DBEl42 Processor is complete.

B--48

5B.10 DBEM2 MODULE STRUCTURE

SB.10 DBEM2 MODULE STRUCTURE

After all the coding details given in 5B.5 through §B.9 it is perhaps refreshing to get an
overall picture of the structure of DBEM2. A hierarchical diagram of the module structure
can provide such a picture:

DBEM2
DOCOMMAND

BUILD
CLEAR
DEFINE

DEFINE-BOUNDARYXONDITIONS
BCVALUES

DEFINE-ELEMENTS
DEFINEMATERIAL
DEFINE-FIELD-LOCATIONS
DEFINE-PRESTRESS
DEFINE .SEGMENTS
DEFINE-SYMMETRY

GENERATE
COEFF
SETUP

PRINT-BOUIIDARY -CONDITIONS
PRINT-BOUNDARY-RESULTS
PRINTXOEFFICIENTS

PRI NT-REAL MATRIX
PRI NT-ELEMENTS
PRINT-FIELD -RESULTS

SOMIGLIANA
PRINTMATERIAL
PRINT-PRESTRESS
PR 111 T -RHS

PRINT

FIELDP

PRINT -REAL MATRIX
PRI!IT.SEGMENTS
P R I 1 J T 3 0 LUT I 0 N

PRINT-SYMMETRY

GAUSSER

PRINT -REAL MATRIX

SOLVE

STOP

This diagram of course excludes the NICE utilities such as the CLIP system. With this
omission noted, the deepest module level is five. This is a feature symptomatic of a fairly

B-49

Appendlx B: A DIRECT BOUNDARY ELEMENT PROCESSOR

simple Processor. (Actual production Processors in the NICE system reach module levels
of order 15-20.)

.-

I

B-50

5B.11 AN EXAMPLE PROBLEM

5B.11 AN EXAMPLE PROBLEM

It is convenient to test DBEMZ on the same example problem used in Crouch and Starfield
(ref. B-1). The problem concerns a unit-radius circular hole in an infinite body under
uniaxial tension at infinity. The boundary element discretization for one-quarter of the
hole is shown in Figure B.2.

Figure B.2. Circular hole in an infinite body:
(a) problem specifications, (b) boundary element model

Both x = 0 and y = 0 are symmetry lines. The boundary contour is approximated by six
straight-line segments, each of which consists of one boundary element. Two field point
lines are chosen along portions of the z and y axes as shown in Figure B.2(a).

B-51

Appendix B: A DIRECT BOUNDARY ELEMENT PROCESSOR

The input, for this problem is prepared (with the text editor) in the form of a script
command file:

clear
def segments

seg=l b=l ,O e=.9659,.2588
eeg=2 b=.9659,.2588 e=.8660,.5000
seg=3 b=.8660,.5000 e=.7071,.7071
seg=4 b=.7071,.7071 e=.5000,.8660
seg=5 b=.5000..8660 e=.2588,.9659
eeg=6 b=.2688,.9659 e=O,l
end

em=7.E4 ; pr=0.2 ; end

xsym=O ; yeym = 0 ; end

exx0=100 ; end

line=l f=1.0 1=6,0 p=9
line=2 f = O , 1 1=0,6 p=Q
end

def material

def symmetry

def prestress

def field

pri eeg ; pri mat ; pri bou ; pri symm
build ; gen ; e o 1
pri re8 ; pri res/field
etop

; pri pres ; pri field

Note that there is no need for DEFINE ELEMENT input data because each segment contains
only one boundary element, which is the default assumption.

Upon starting the DBEM2 processor, this file is inserted in the command Stream
through an ADD directive. For example, under VAX/VMS:

$ RUN DBEM2
DBEM2> *ADD CIRCHOLE.ADD

-
where CIRCHOLE.ADD is the assumed name of the input file. The printed results should
then be compared with those given in Appendix C of Crouch and Starfield (ref. B-1).

I3-52

~~

5B.11 AN EXAMPLE PROBLEM

References:

R-1 Crouch S. L. and Starfield, A. M., Boundary Element Methods in Solid Mechanics:
with Applications in Rock Mechanics and Geological Engineering. G . Allen and Un-
win, London, 1983.

B- 53

-

Appendix B: A DIRECT BOUNDARY ELEMENT PROCESSOR

THIS PAGE LEFT BLANK INTENTIONALLY.

B-54

C
J

Help Files

Appendlx C: HELP FILES

5C.l BACKGROUND

CLIP provides keyword-driven online help display services through the HFILE and HELP
directives documented in Volume 11. Online help text does not reside in the Processors
themselves, but 0x1 separated card-image files known as help files. To take advantage of
the display services, the structure of help files must conform to the technical specification
presented in this Appendix.

The orgacizetion of this Appendix is as follows. 5C.2 gives an overview of the NICE
online help philosophy. 5C.3 and 5C.4 go to the heart of the matter and cover technical
details that should be mastered before you attempt to write help files for your Processors.
The exposition relies heavily on an example file prepared for the DBEM2 (Two-Dimensional
Directly-formulated Boundary Element Method) Processor documented in Appendix B.
5C.5 illustrates the use of messages to implement HELP commands for inexperienced users.
Finally, gC.6 shows the complete help file for DREM'L.

The help file st,ructure described here was originally devised by Charles Perry in 1980
for the NICE demonstration Processors MUP and SNAP.

c-2

5C.2 HELP FILE ORGANIZATION OVERVIEW

5C.2 HELP FILE ORGANIZATION OVERVIEW

The structure of a NICE help file closely mimics that of the VAX/VMS online system
help file, which served as inspiration for the original design. The NICE implementation,
however, is not restricted to specific computers.

A NICE help file is a tree of information that maps into a sequential f i le organization
readable with standard formatted FORTRAN I/O. The mapping is controlled by sentinel
characters stored in the first column of each record (card image, line) of the file. These
characters do not show up on display. The arrangement of the information is such that
the file reader never has to buckspace over previously read lines while “traversing” the help
file.

Each tree has a root. Each NICE help file has a root section, which is located a t the
beginning of the file. The root has a name, which serves as a file label. The root name of
a NICE Processor help file is usually the Processor name.

Logically subordinate to the root are the topic keys, which identify primary sub-
jects such as command names. Topic keys may in turn have subtopic keys which identify
secondary subjects such as command components. Subtopic keys may in turn have sub-
ordinate “subsubtopic” keys, and so on. However, all help files written so far for NICE
Processors have not gone beyond the subtopic level.

As an example, an extract of a help file written for the DBEM2 Processor presented in
Appendix C will be used. The example file contains the following three-level information
tree:

c-3

1 Appendlx C: HELP FILES

DBEM2 (root)
BUILD
CLEAR
DEFINE
BOUNDARY -CONDITIONS
ELEMENTS
F I E LD -L 0 CAT I 0 N S
MATERIAL
PRESTRESS
SEGMENTS
SYMMETRYXONDITIONS

BUILD
GENERATE
SOLVE
PRINT
B OU 1.1 D ARY -C 0 N D IT IONS
COEFF IC I EHTS
ELEMENTS
FIELD .RESULTS
MATERIAL
PRESTRESS
RHS
RESULTS
SEGMENTS
SOLUTION
SYMMETRY

STOP

DBEM2 is the root name, which is the same as the Processor name. There are seven topic
keys: BUILD, CLEAR, DEFINE, GENERATE, PRINT, SOLVE and STOP. The topic names are the
same as the action verbs of the DBEM2 comrriands listed in §B.5.

Topic key DEFINE has seven subtopics itfcritified by keys BOUNDARY-CONDITIONS ...
SYMMETRY COMDITIOMS. These snhtopic identifiers correspond to the second keyword in
DEFINE commands (see tB.7). Similarly, topic PRINT has eleven subtopics that correspond
to the second keyword in PRINT commands (see sn.9). The other topic keys have no
subtopics.

Assume that CLIP has been told the name of the Processor help file through an HFILE
directive (Volume 11). For example, the Processor may have submitted an HFILE directive
as a message via CLPUT ($2.4). Printing of help file sections may now be requested through
HELP directives.

I

*

c-4

~ ~~

5C.2 HELP FILE ORGANIZATION OVERVIEW

Some directive examples:

*HELP
*HELP DEFINE
*HELP DEFINE MATERIAL

The first example directive requests only root information. The second one requests general
information on command DEFINE. The third one requests specific information on command
DEF I HE MATER1 AL.

c-5

Appendlx C: HELP FILES

5C.3 ORGANIZATIONAL DETAILS

The present section describes the organizational details of NICE help files. The DBEM2 help
file is used throughout as expository example.

The Root Section

Here is a sensible implementation of t,he root section of the DBEM2 help file:
~

C=DECK AAAROOT
> DBEM2
? B-uild C-lear D-efine G-enerate P-rint So-lve St-op
*

. Help on the DBEM2 Processor commands can be obtained by typing

HELP Topic Subtopic . . .

.

. particular commands.
!
! Available Topics:
!
! BUILD CLEAR DEFIIIE GEIJERATE PRIMT SOLVE
! STOP
!

where Topics are command names and Subtopics variations of

*

Now for the details.
First of all, a help file is nornlally prepared using a text editor. It must therefore

be formatted and sequential. The logical structure of the file is controlled by eentinel
characters that appear in the first coltirnn of each line. The help-file reader recognizes the
following sentinel characters:

Syni bo1
>
<
*

?

!

Any line that doesn’t have one of the
This fact has practical applications in
MAX preprocessors, since master source
the file reader and therefore harmless.

Name
right angle bracket
left, angle bracket
asterisk
question mark
period
exclamation mark

above sentinels is ignored by the help file reader.
the maintenance of help files with the help of the
code statements that begin with C= are ignored by

Five of the sentinels have been used in the above example: >, ?, *, . and !. Now’s
the time to describe the functions they perform.

c-6

5 C .3 0 R G A N I 2 A T ION A L D ETA I L S

The first line, which has a left-angle-bracket sentinel, contains the name of the root:
DBEM2. This name effectively labels the help file. As noted previously, for a Processor help
file the label is usua.lly the Processor name. The name string may be written free-field
after the sentinel. Whenever any section of a help file is listed, this label is written out a3
a reminder of which help file is being displayed.

Next comes the question-mark lines. These list topic keys subordinate to the root.
These keys may be written in root plus extension form with the two components being
separated by a caret sign, as explained in 55.1. For example, DEFINE is a topic key with
root D, so it can appear in the question-mark lines as

D-ef ine

All lowercase letters are automatically converted to upper case for cornparison tests, so
any mixture of uppercase of lowercase letters is acceptable. You can render the above as
D-EFINE or d-ef ine or DEFine; it doesn’t matter.

In question-mark lines topic keys are written free field, with blank separators. No
particular arrangement is expected: topic keys may appear in any order; however, alpha-
betic ordering (as in the example above) is recornrnended for disciplined file maintenance.
There is no limit 011 the number of question-mark lines.

The empty line with only an asterisk sentinel is called a terminator. It simply tells
the help file reader that no more topic-key lines follow. (An explicit terminator is needed
because of the sequential nature of the file and the no-backspacing constraint.)

The next group of lines are identified by period and exclamation-mark sentinels. This
is the roof help t e r t , and contains the lines that will actually be printed if a one-word HELP
directive is received. The text that appears on the users’ terminal should be

Help on the DBEMZ Proceesor commands can be obtained by typing

HELP Topic Subtopic . . .

where Topice are command names and Subtopics variations of
particular commande.

Available Topice:

BUILD CLEAR DEFINE GENERATE PRINT SOLVE
STOP

. - _ ~ _ -

The name enclosed between < arid > is the file label. It will appear on all help displays.

c-7

Appendlx C : HELP FILES

The distinction between period and exclamation mark sentinels only becomes relevant if
a help request names an unknown topic. For example, suppose that CLIP receives the
directive

*HELP 222

The response on your terminal will be
-- .

Sorry, no documentation on zzz

Available Topics:

BUILD CLEAR DEFINE GENERATE PRINT SOLVE
STOP

The “sorry” message comes from the help file reader. Following the message, the lines
with exclamation-mark sentinels are listed. But how does the reader know that topic ZZZ
doesn’t exist without ever going beyond the root section? Because ZZZ was not listed in
the topic-key dictionary (the question-mark sentinel lines, remember?).

Finally, the last blank line with only an asterisk sentinel is again a terminator; this
now explicitly marks the end of the listable text section.

A Topic Section with Subordinates

Now suppose that the help request is

“HELP DEFINE

The file reader begins searching the topic-key dictionary in the root. Satisfied that the
topic exists, it speeds past the root to plunge deeper into the help file with a single-minded
objective: to find the DEFIME section. This is how such a section may look:

C=DECK DEFINE
> D^EFINE
? B-oundary-conditione F-ield-locations M-aterial P-restrees
? Se-gments Sy-mrnetry-conditione

. DEFINE
*

,

. Format:

The DEFINE command introduces an input data section.

DEFIME What

. where keyword What identifies the input data section that

. follows. The section consists of subordinate commands terminated

C-8

$ C .3 0 R G AN 1 Z A T IO N AL D ETA1 LS

I

.

. subtopice.
!
! Available Subtopice:
!
! BOUNDARY-CONDITIONS ELEMENTS FIELD-LOCATIONS
! MATERIAL SEGMENTS PRESTRESS
! SYMMETRY-CONDITIONS
!

by an END command. The legal keywords are listed below as

*

The section replicates the basic structure of the root section in many respects. The first
line has the by now familiar right-angle-bracket sentinel with the topic identifier written in
“root plus extension” form. When the help file reader detects this combination it begins
paying attention to the material that follows.

Next are several lines with question-mark sentinels. These list all subtopic keys sub-
ordinate to DEFINE, so they form a subtopic dictionary. This subsection is terminated
by an asterisk-sentinel line. Then comes the listable information: lines with period and
exclamation mark sentinels, the whole being closed by another terminator line. So you can
pretty much guess that in response l o the *HELP DEFINE directive, here is what you will
see:

DEFINE

The DEFINE command introduces an input data section.

Format :

DEF IIlE What

where keyword What identifies the input data section that
followe. The section consists of subordinate commands terminated
by 8n END command.
eubtopice.

The legal keywords are listed below as

Available Subtopics:

BOUIIDARY_COIIDITIOIlS ELEMEIITS FIELD-LOCATIOMS
MATERIAL SEGMENTS PRESTRESS
SYlr(METRY-COHDITIONS

i

C-9

Appendix C: HELP FILES

A Topic Sectioii With No Subordinates
Topic CLEAR of the example help file has no subordinate keys (i e , no subtopics). The help
file section has therefore a simpler structure:

subrout ine CLEAR
call CLPUTW (’ O N ’)
r e t u r n
end

The question-mark sentinel line is empty, which indicates no subtopics, and the exclamation-
mark lines are also missing. But there is a new important thing a t the end of the section:
a line that has only a left-angle-bracket sentinel. This is necessary for ordered traversal
of the information t,ree: it means that there are no more subordinate topics and we must
“back up”. (In corriputer science terminology: we have reached a leu! node.) We shall go
over this important topic in detail in gC.4.

A Subtopic Section

If you have followed the explanation so far, you should have no trouble with this one. Let’s
assume the directive is

*HELP D E F I N E MATERIAL

Here is the corresponding section:

c-10

§ C .3 0 R GAN I Z A T IO N AL D ETA1 LS

C=DECK DEFINEMAT
> M-aterial
?

. DEFINE
*

MATERIAL

The DEFINE MATERIAL command introduces subordinate material
property commande of the form

EM = em
PR = nu

where em is the elastic modulus and nu ie Poieeon'e
ratio. Terminate theee commande with an END command.

*
<

This is quite similar to the CLEAR t,opic because it has no subordinates. Note again the
left-angle-bracket termination line.

Appendlx C: HELP FILES

5C.4 PUTTING IT ALL TOGETHER

To assemble the complete help file one has to pay attention to some nesting concepts. This
can be more easily understood by looking at the information tree for the example help file
rendered as a hierarchical diagram:

root
BUILD
CLEAR
DEFINE

BOUNDARY .C 0 M D IT I 0 N S
ELEMENTS
MATER1 A L
FIELD-LOCATIONS
PRESTRESS
SEGMENTS
SYMMETRY

GENERATE
PRINT
BOUNDARYXONDITIONS
COEFFICIENTS
ELEMENTS
FIELD-RESULTS
MATERIAL
PRESTRESS
RESULTS
RHS
SEGMENTS
SO LUTI 011
SYMMETRY

SOLVE
STOP

This hierarchical tree actually defines the order in which the sections are juxtaposed to
form the help file. First comes the root section. tlicn a topic section, then its subordinate
subtopics, then another topic section, and so on.

There is in fact considerable more latitude than the above structure suggests. Things
at the same level need not be alphabetically ordered: they may actually appear in any
order. For example, the BUILD section doesn’t have to be the section that follows the root;
you can make CLEAR or DEFINE or STOP the first one. Similarly, there is no need for the
subordinate subtopics of, say, DEFINE to be alphabetically ordered. However, you cannot
put the DEFINE subtopics after PRINT and vice versa: adjacency irriylies dependency.

The alphabetical ordering used in the example above is nonetheless recommended for
maintaining help files, as it simplifies the work involved in inserting new help sections

c-12

5C.4 PUTTING IT ALL TOGETHER

corresponding to commands or command opLions you have just added to the Processor.
Particularly important is the maintenance of help f i l e consistency between dictionaries and
topic sections. For example, suppose you have added a PLOT coniinand to DBEMZ. After
writing a PLOT help section, you should not forget to go to the key dictionary located in
the root section and add the PLOT keyword there.

Traversing the Help Tree

Whoever prepares a help file must be aware of the interplay between right-angle-bracket
and left-angle-bracket sentinels. This understanding is necessary to fix the “lost help”
difficulty discussed later in this subsection.

Much of the work of the help file reader is spent traversing across hundreds or even
thousands of lines looking for the right key combinations. Conventionally the root is at
level zero, topics a t level one, subtopics at level two, and so on.

Upon leaving the root, traversal proceeds as follows: a right-angle-bracket sentinel
increments the tree level by one unit; a left-angle-bracket sentinel decrements the tree
level by one unit. Keeping track of the level is crucial for matching the right subject.
For example, nothing prohibits the same subtopic key from appearing more than once
in association wit,h different subtopics. (In fact this is quite common, see e.g. DEFINE
SEGMENT and PRINT SEGMENT in our sample file.)

chical diagram but now with > and < inserted in the proper places:
To further illustrate the angle-bracket business, let us reproduce the example hierar-

C-13

~

Appendix C: HELP FILES

> root
> BUILD <
> CLEAR <
> DEFINE

> BOUNDARYXONDITIONS <
> ELEMENTS <
> FIELD-LOCATIONS C
> MATERIAL <
> PRESTRESS
> SEGMENTS <
> SYMMETRY < <

> GEWERATE <
> PRINT

> BOU!?DARY -CONDITIONS <
> COEFFICIENTS <
> ELEMENTS <
> FIELD-RESULTS
> MATERIAL c

> PRESTRESS <
> RESULTS <
> RHS <
> SEGMEIITS <
> SOLUTION <
> SYMMETRY < <

> SOLVE
> STOP < <

This diagram ought to make everything said so far perfectly clear.
A common problem encountered with new or updated help files is the “where is it?”

syndrome. The u w r types, e.g. *HELP PRINT; no diagnostics appear but nothing comes
out! This is usually caused by either leaving out a left-angle-bracket sentinel line, or by
having one too many.

To pinpoint the trouble spat, try displaying topics stored nearer and nearer the root
until the display appears. Then backtrack further from the root until the display suddenly
disappears. This “bisection” troubleshooting technique is foolproof.

C-14

5C.5 IMPLEMENTING HELP COMMANDS AS MESSAGES

5C.5 IMPLEMENTING HELP COMMANDS AS MESSAGES

The user of a NICE Processor for which a help file exists can always get online help through
the HFILE and HELP CLIP directives. Rut this is too much to expect from inexperienced
users, who are hardly likely to know what a directive or a help file is, let alone what's the
name of the latter. And such users are the ones in more need of help ...

What the beginner user of a Processor such as DBEM2 wants to do is to type HELP
- not *HELP - and the root section appears magically on the screen; and to type HELP
DEFINE and the DEFINE section appears on the screen. This can be easily implemented
through messages as illustrated here for the DBEM2 Processor.

We first expand the original DOCOMMAND subroutine to install a HELP command (which
may be abbreviated to H):

*
* Top level command interpreter for DBEM2
*

subroutine DO-COMMAND (verb)

imp1 i c it none
character key*8, verb*(*)
logical CMATCH

key = verb
if (CMATCH (key, 'B-UILD')) then

else if (CMATCH (key, 'C-LEAR')) then

else if (CMATCH (key, 'D-EFINE' 1) then

else If (CMATCH (key, 'Ĝ E!iERATE')) then

else if (CMATCH (key. 'H-ELP')) then

else if (CMATCH (key, 'P-RINT') then

else if (CMATCH (key, 'SO-LVE')) then

else if (Cb!ATCH (Bey, 'ST-OP')) then

else

end if
return
end

*

*

call BUILD

call CLEAR

call DEFINE

call GENERATE

call HELP

call PRINT

call SOLVE

call STOP

print * , ' *** Illegal or ambiguous verb: ' , key

C--15

Appendlx C: HELP FILES

Then we write subroutine HELP, which sends the necessary one-liners via CLPUT:

*
* Scream for help
*

subroutine HELP

imp1 ic it none
c harac t er*8 CCLVAL
logical fire t-entry
save firet-entry
data f iret-entry /.true. /

if (f irst-entry) then

. f alee.

*

*

call CLPUT ('*hf drdl:[felippa.rnanuale.clip.3.bem]dbem2.hlp')
f iret-entry =

end if
call CLPUT ('*help '//CCLVAL(2)//' '//CCLVAL(3))
return
end

On first entry to HELP, logical flag f irst-entry is true, and HELP informs CLIP of the help
file name by sending an HFILE directive. (The full name of the help file has been assumed
to be drdl : [f elippa ,manuals. clip. 3. bem] dbem. hlp on a VAX/VMS system.)

Then the subroutine manufactures a HELP directive by catenating keywords entered
by the user and submits it as a message. A maximum of two keywords after HELP has been
assumed; it should .be fairly obvious how to extend the construction to as many help levels
as necessary.

C-16

5C.6 THE EXAMPLE HELP FILE

gC.6 THE EXAMPLE HELP FILE

We conclude the Appendix with a listing of the complete DBEM2 help file. The reader
should pay no attention to the C=deck statements; these are used only for file maintenance
and are ignored by the CLIP help file reader.

C=DECK AAAROOT
> DBEM2
? B-uild C-lear D-efine G-enerate P-rint So-lve St'op
*

. Help on the DBEMS Processor commands can be obtained by typing

HELP Topic Subtopic . . .

.

. particular commands.
!
! Available Topics:
!
! BUILD CLEAR DEFINE GEIJERATE PRINT SOLVE
! STOP
!

C=DECK BUILD
> B-UILD
?

. BUILD

where Topics are command names and Subtopics variations of

*

*

.

. model.

. Format:

This command builds the Boundary Element tables of the discrete

BUILD

.

.
The BUILD command must be given after the problem-definition
input data is complete, and before the GEIJERATE command.

*
<
C=DECK CLEAR
> C-LEAR
?

. CLEAR
*

,

. certain defaults.

. Format:

This command clears all problem definition arrays and sets

C-17

Appendlx C: HELP FILES

CLEAR

.

.
The CLEAR command is particularly useful if you are solving
several unrelated problems in one run.

*
<
C-DECK DEFINE
> D-EFINE
? B-oundary-conditions F-ield-locations M-aterial P-restrese
? Se-gments Sy-mmetry-conditions
*

!
!
!
!
!
!
!

I
*

DEFINE

The DEFINE command introduces an input data section.

Format :

DEFINE What

where keyword What identifies the input data section that
followe. The eection consiets of subordinate commands terminated
by an END command.
subtopice.

Available Subtopics :

The legal keywords are listed below as

BOUNDARY -COIiD IT IONS ELEMENTS FIELD-LOCATIONS
MATERIAL SEGMENTS PRESTRESS
SYMMETRY-COIID ITIOHS

C=DECK DEFINEBOU
> B-oundary-conditions
?

. DEFINE
*

BOUNDARY-COIID ITIOIlS

The DEFIIIE BOUNDARY-COIJDITIOIIS commands introduces
BC commands that specify displacements and/or stresses
boundary segments. The BC commands have the form

SEG=ieeg (SS = sig-e I SD=u-s) (NS=sig,n I ND = u-d)

in which iseg ie the segment number. SS means shear
SD ehear displacement, NS normal stress and ND normal
displacement; the value that follows is the prescribed
value. For stresses, the value is the resultant force
Terminate these commands with an END command.

on

etreee,

\

I
If no BC is specified for a segment, a stress-free condition

C-18

§C.6 THE EXAMPLE HELP FILE

is assumed.

*
<
C=DECK DEFINEELE
> E'lemente

DEFIfJE
ELEMENTS

The DEFINE ELEMENTS command introduces subordinate commande
that specify into how many boundary elements segments are to
be subdivided. These commands have the form:

SEG = isegl, . . . isegk ELEM = nel, . . . nek

This specifies that segment isegl is to be subdivided into
ne1 (ge 1) boundary elements, segment iseg2 into
ne2 elements, and so on. Terminate these commands with
and END command.

C=DECK DEFINEFIE
> Field-locations

DEFIME
FIELD-LOCATIONS

The DEFIfJE FIELD-LOCATIOMS command introduces Subordinate
commands that specify field lines at which stresses and
displacements are to be evaluated later in response to a
PRINT RESULTS/FIELD command. These commands have the form

LINE=ilin FIRST=xf , yf LAST=xl, y l [POINTS=nintpts]

LINE is a field-line identification number (1 to 100).
The line extends from (xf,yf) to (x1,yl). The optional POINTS
phrase specifies that output is required at
intermediate points to be inserted, equally spaced,
between the first and last point.
no intermediate points are inserted.
commands with an END command.

nintpts

If the phrase is omitted,
Terminate these

C=DECK DEFINEMAT
> M-aterial
?

. DEFINE
*

c-19

Appendlx C: HELP FILES

MATERIAL

ub

The DEFINE MATERIAL command introducee eubordinate material
property commands of the form

EM = em
PR = nu

where em ie the elastic modulus and nu ie Poieeon's
ratio. Terminate these commands with an END command.

*
<
C=DECK DEFINEPRE
> P-reetreee
?

. DEFINE
*

PRESTRESS

The DEFINE PRESTRESS command introduces rdinate
commande that specify a uniform initial etreee
(preetreee) etate. Theee commands have the form

SXXO = eig-xx
SYYO = eig-yy
SXYO = eig-xy

The SXXO command epecifiee the eigma-xx prestreee component,
and 80 on. Nonzero preetreee data ie particularly useful in
unbounded-domain probleme, for which it takee the role of
conditione at infinity.

If no preetreee data ie specified, the initial etate
ie aeeumed to be etreee free.

Terminate thie data with an END command.
I

*
<
C=DECK DEFIMESEG
> S-egmente
?

. DEFINE
*

SEGMENTS

The DEFINE SEGMENTS command introducee subordinate commands
that specify the geometry of boundary eegmente on which boundary
elemente will be located. Theee commande have the form

SEG=ieeg BEGIN=xb,yb END=xe,ye

in which ieeg ie the segment identification number
(1 to 100). The segment extende from (xb,yb) to (xe.ye)

I c-20 1

5C.6 THE EXAMPLE HELP FILE

Terminate these commands with an END command.

The BEGIFI/EID specification establishes a boundary traversal
sense. The traversal should be clockwise if you are solving
a finite-domain problem enclosed by the segmented boundary;
counterclockwiee if you are solving an unbounded domain
problem (e.g a cavity) outside the segmented boundary.

*
<
C=DECK DEFINESYM
> Sy-mmetry-conditions
?

. DEFINE
*

SYMMETRY-COIJD ITIOMS

The DEFINE SYMMETRY-COIJDITIOMS command introduces
commands that specify symmetry conditions about 1
parallel to the coordinate axes. These commands
form

XSYM = a
YSYM = b

subordinate
or 2 axes
have the

The XSYM command specifies x=a as an axis of symmetry,
and the YSYM command specifies y=b as an axis of
symmetry. Terminate this information with an END command.

If no symmetry conditions are specified, no symmetry
conditions are assumed to hold.

*
C
<
C=DECK GENERATE
> G-enerate

GENERATE

This command causes the discrete element equations, which consist
of the influence coefficient matrix and the right-hand-side
(forcing) vector, to be generated.

Format :

GENERATE

The GENERATE command must be
before a SOLVE command.

given after a BUILD command but

c--21

Appendlx C: HELP FILES

*

!
!
!
!
!
!
!
!
*

<
C=DECK PRINT
> P'rint
? B-oundary-conditione C-oefficients F-ield-locations
? M-aterial P-reetreee
? R-he Re-eulte
? Se-gmente S-olution Sy-mmetry-conditione

PRINT

The PRINT command requests printing of input data,
model definition data, or reeultr data.

Format :

PRINT What

where keyword What identifiee what ie to be printed.
The legal keyword6 are li6ted below a8 eubtopice.

Available Subtopice :

BOUNDARY-COND ITIONS COEFF IC IEWTS ELEMENTS
FIELD-LOCATIONS MATERIAL PRESTRESS
SEGMENTS RESULTS RHS
SOLUTION SYMMETRY-COND I TIONS

C=DECK PRINTBOU
> B-oundary-conditione
?

. PRINT
*

BO WND ARY - COND IT IONS

The PRINT BOUMDARY-CO~JDITIOI1S command prints the etreee/
displacement boundary conditione in effect for all defined
boundary elements.

*
<
C=DECK PRINTCOE
> C-oefficiente
?

. PRINT
*

COEFFICIENTS

The PRINT COEFFICIENT command prints the matrix of
boundary influence coef f iciente produced by a GENERATE
command. Primarily used for debugging.

*

c-22

5C.6 THE EXAMPLE HELP FILE

<
C=DECK PRINTELE
> E-lemente
?

. PRINT
*

ELEMENTS

The PRINT ELEMENTS command prints the Boundary Element data
produced by the last BUILD command.

*
<
C=DECK PRINTFIE
> F-ield-locatione
?

. PRINT
*

FIELD-LOCATIONS

The PRINT FIELD-LOCATIONS command prints information on
field lines at which stresses and displacements are to be
computed in reeponee to a PRINT RESULTS /F command.

*
C
C=DECK PRINTMAT
> M-aterial
?

. PRINT
*

MATER I A L

The PRINT MATERIAL command prints material property data.

*
C
C=DECK PRINTPRE
> P-restress
?

. PRINT
*

PRESTRESS

The PRINT PRESTRESS command prints initial strees data.

*
C
C=DECK PRINTRES
> R-eeulte
?

. PRINT
*

RESULTS

(2-23

Appendlx C: HELP FILES

*
<
C=DECK
> R-he
?
*

An unqualified PRINT RESULTS command prints computed stresees
and displacements at boundary element midpoints.

If the command is qualified with keyword FIELD, streroes
and dieplacements at specified field location0 will be
computed and printed.

PRINTRHS

. PRINT
RHS

The PRIMT RHS command prints the right-hand-side (boundary
force) vector produced by a GENERATE command.
in debugging situations.

Primarily used

*
<
C=DECK PRINTSEG
> Se-gmente
?

. PRINT
*

S E GMEW T S

The PRINT SEGMENTS command prints geometric information on
defined boundary elements as well as the number of
boundary

*
<
C=DECK PRINTSOL
> So-lution
?

. PRINT
*

SOLUTION

elements per segment.

The PRINT SQLUTIOlJ command prints the boundary solution vector
produced by a SOLVE command.
situations.

Primarily used in debugging

*
<
C=DECK PRINTSYM
> Sy-mmetry-conditions
?
*

C-24

sC.6 THE EXAMPLE HELP FILE

. PRINT
SYMMETRY-CONDITIONS

The PRINT SYMMETFLY,COI?DITIONS command print8 rymmetry
conditions data.

*
<
<
C=DECK SOLVE
> S-olve
?

. SOLVE
*

.

.
This command causee the discrete element equations to be
solved for the boundary element unknowe.

. Format:

SOLVE

, The SOLVE command must be given after a GENERATE command.

*
<
C=DECK STOP

?

. STOP

> st-op

*

This command terminates the execution of the Processor.

. Format:

STOP

*
<
<

C-25

Appendix C: HELP FILES

a

THIS PAGE LEFT BLANK INTENTIONALLY.

C-26

Low-level
Utilities

D-1

Appendlx D: LOW-LEVEL UTILITIES

5D.l GENERAL DESCRIPTION

This Appendix presents some low-level utilities which are not part of CLIP itself, but are
heavily used by CLIP as well as by other components of the NICE architecture. Most of
these utilities deal with character nianiyulation.

The calling sequences of these utilities is described here because they may be useful
in programming the Processor shell. We have seen some examples in Appendix A.

D-2

50.2 CONVERT CHARACTER TO HOLLERITH: CCZH

4

gD.2 CONVERT CHARACTER TO HOLLERITH: CCZH

CC2H converts a FOIIII'RAN 77 character string to a Hollerith string. The first destination
character is assumed to be word aligned.

Calling Sequence

CALL CC2H (C , H , N)

Input Arguments

C Source character string.

N Number of characters to be moved. No operation if N 5 0.

Output Argument

H Receiving IIollerith string (typed integer, floating-point or logical in the
main program).
Characters are stored in H beginning at the leftmost location. If H is of
INTEGER or REAL type, this is necessarily word-aligned. CC2H does not
blankfill H, however.

REMARK D.l

The implementation of CC2H has turned out to be surprisingly machine-dependent. So far, five
implementations have had to be written for five computers (CIIC, CRAY, IBM, UNIVAC and
VAX). Three versions are presented below, as the techniques followed may be useful for similar
circumstances.

REMARK D.2

The VAX implementation, which takes advantage of t,he LOCICAL*l data type provided by the
VAX-11 FORTRAN compiler, is the simplest and most efficient:

subroutine CC2H

implicit none
logical*l h(*)
character C (*I
do 3000 k = 1,n

$ (c , h, n)

h(k) = ichar(c(k1)
3000 continue

return
end

D-3

Appendlx D: LOW-LEVEL UTILITIES

REMARK D.3

The implementation for a word-addressable machine must make use of bit-manipulation (Boolean)
functions provided by the host FORTRAN compiler. This is illustrated by the CRAY version:

subroutine CC2H

character*l c(*)
integer h(*), ich, jch, k, n . iwd, lcs
do 3000 k = 1 .n

$ (c, h, n)

iwd = (k-1)/8 + 1
ICs = 8*(8*iwd - (k-1))
ich = shift (ichar (c (k) ,561
jch =
h(iwd) = or (jch, shift(ich,lcs))

and (h(iwd) .shift(mask(72) ,ICs)

3000 continue
return
end

REMARK 0 . 4

On byte addressable machines in which the compiler provides the LOGICAL*l data type but pro-
hibits storing an integer into it, one may use an internal READ construction illustrated by the
IBM version:

subroutine CC2H

character.> (*) c
logical* 1 h(*)

do 3000 k = 1,(n+127)/128

$ (c, h, n>

. ml = 0

m2 = min(ml+n-128*(k-l),ml+l28)
read (c (ml+l :m2), ' (128A1) '1 , (h(i) ,i=ml+l .m2>
mi = m2

3000 continue
return
end

REMARK 0 . 5

The above versions have been extracted from the master source code of CC2H via the preprocessor
MAX.

EXAMPLE D . l

Four characters per word are assumed.

INTEGER H(5)
. . .
CALL CC2H ('X-label', H, 7)

D-4 c -3

§D.2 CONVERT CHARACTER TO HOLLERITH: CC2H

Word H(1) receives 'X-la' while characters 1-3 of H(2) receive 'bel'. The remaining character
positions in H are not altered.

D-5

Appendix D: LOW-LEVEL UTILITIES

5D.3 CONVERT CHARACTER TO OFFSET HOLLERITH: CCZHO

CC2HO converts a 1;OItTRAN 77 character stririg to a Hollerith string. The first destination
character need not be word aligned.

Calling Sequence

I CALL CC2HO (C, H, J , N) 1
Input Arguments

C

J

N

Output Argument

H

Source character string.

Offset of first receiving character in H. May be zero through NCWORD-I,
where NCWORD is the number of characters per word. If J is outside this
range the results are unpredictable.

Number of characters to be moved. No operation if N 5 0.

Receiving IIollerith string (typed integer, floating-point or logical in the
main program).

Characters are stored in H beginning a t J characters from the leftmost
(word aligned) character position.

REMARK D.6

CALL CC2HO (C, H, 0, 1 5) (zero third argument) is the same as CALL CC2H (C, H, N).

E X A M P L E D.2

Four characters per word are assumed.

LOGICAL 99 (3)
. . .
CALL CC2H ('Level: ' , 99, 12)
CALL CC2HO ('22'. 99(2), 3 . 2)

On return from CC2H0, 99 will contain 12HLevel: 22 .

D-6

$0 .4 C O N V E R T HOLLERITH TO CHARACTERS: CH2C

5D.4 CONVERT HOLLERITH TO CHARACTERS: CH2C

CH2C converts a Hollerith string to a FORTRAN 77 character string. The first source
character is assumed to be word aligned.

Calling Sequence

Input Arguments

H Source IIolleritli string. Array H may be of type integer, floating-point
or logical in the callirig program.

N Number of characters to be moved. No operation if N 5 0.

Output Argument

C Receiving character string.

REMARK D.7

The implementation of CH2C is similar to that of CC2H (5U.2), and is likewise machine-dependent.
So far, five implementations have had to be written for five computers (CDC, CRAY, IBM,
UNIVAC and VAX).

E X A M P L E D.3

Four characters per word are assumed.

INTEGER H(3)
CHARACTER* 12 CH
DATA H /4Habcd, 4Hefgh, 4Hijkl /

On return from CH2C, CH will contain '--efgh------'.

D-7

Appendlx D: LOW-LEVEL UTILIT IES

5D.6 CONVERT OFFSET HOLLERITH TO CHARACTER: CHO2C

CH02C converts a Hollerith string to a FORTRAN 77 character string. The first source
character need not be word aligned.

Calling Sequence

I CALL C H 0 2 C (H , J , C, N) 1
Inputs Arguments

H Source Hollerith string,

J Offset of first source character in H. May be zero through NCWORD-1,
where NCWORD is the number of characters per word. If J is outside this
range the results are unpredictable.

N Number of characters to be moved. No operation if N 5 0.

Output Argument

C Receiving character string.

REMARK 0.8

CALL CHO2C (H, 0, C, N) (zero second argument) is the same as CALL CH2C (H, C, N).

E X A M P L E 0 . 4

Four characters per word are assumed.

INTEGER H(3)
CHARACTER* 12 CH
DATA H /4Habcd. 4Hefgh, 4Hijkl/

On return from CHOZH, CH will contain '--ghij------'.

D-8

$D.6 COMPARE KEYWORDS: CMATCH

5D.S COMPARE KEYWORDS: CMATCN

CMATCH is a logical function that compares two character strings: an alleged keyword
and an internal keyword, for equality. The internal keyword consist of a “root” and an
optional “extension” portion. These two portions may be separated by a caret character
as described in $5.1. CMATCH first, compares root characters, and reports failure if no match
occurs. If root match is achieved, it continues comparing extension characters until:

4 ’

i

(a) A mismatch is found;

(b) The input or output key is exhausted; or
(c) A blank character is found in either key.

The alleged key may also contain wild characters: a percent sign matches any character
at that particular position in the internal key, and a trailing asterisk matches all characters
that follow.

Typical Calling Sequence

LOGICAL CMATCH

IF (CMATCH (KEY1, KEY211 THEN
. . .

I . . . I

Input Arguments

KEY 1

KEY 2

Alleged keyword; typically this is entered by the user.

Internal keyword against which KEY1 is compared.

Function Ret urn

CMATCH . TRUE. if equality verified; else . FALSE.

D-9

Appendix D: LOW-LEVEL UTILITIES

REMARK D.9

This is the present i~nplenieritation of CMATCH as extracted from the master source code via MAX:

b logical function CMATCH
s (keyl, key21
implicit none
character*(*) keyl, key2
character chl, ch2
integer i, j , root
1 - 0
root = 1
CMATCH = .TRUE.
do 2000 j = l.len(key2)
ch2 = key2(j: j)
if (ch2 .eq. ' - ' I then
root = 0
go to 2000

end if
if (ichar(ch2) .ge. ichar('a'1 .and.

s ichar(ch2) .le. ichar('z')) then
ch2 = char(ichar(ch2) - (ichar('a') -ichar('A' 1)
root = 0

end if
chi =
i = i + l
if (i .le. len(key1)) chl = keyl(i:i)
if (chi .eq. ' ' .and. root .eq. 0) return
if (chl .eq. '*'I return
if (chl .eq. ' % ' I chl = ch2
if (chl .ne. ch2) then

I ,

CMATCH = .FALSE.
return

end if
if (ch2 .eq. ' '1 return

2000 continue
return
end

There are no machine dependencies except for the IMPLICIT NONE statement, which is provided
only by the best FOHTHAN compilers.

EXAMPLE D.5

CMATCH ('COPY', 'COPY') returns . TRUE.
CMATCH (' CORRECT ' , ' CO-PY ' returns . FALSE.
CMATCH (' COPYALL ' , ' CO-PY ' returns . TRUE.
CMATCH ('CO*', 'COM-PARE') returns . TRUE.
CMATCH (' COYLPARE ' , ' COM-PARE ' returns . TRUE.

D-10

50.7 FIND BATCH OR INTERACTIVE: FBI

§D.7 FIND BATCH OR INTERACTIVE: FBI

FBI finds whether the run is batch or interactive.

Calling Sequence

I CALL FBI (RUNMOD) I

Input Arguments

None.

Output Argument

RUNMOD An integer variable that receives the run mode indicator.
0: batch mode.

>O: interactive mode.
On the VAX there is further breakdown of the interactive case:

2: interactive mode, input coming from terminal. (also called conver-
sational mode).
1: interactive mode, input from source other than terminal.

REMARK D.10

As can be expected, the implementation of FBI is extremely machine dependent, because run type
information has to be provided by the operating system. Here is the VAX/VMS version, which is
currently the most elaborate one:

~ ~~~

subroutine FBI
$ (runmod)
implicit none
integer runmod
integer*2 itmlet (8)
integer*2 item-code, buffer-length
integer buffer-addr, ate-flage, TERM-TEST
character*l2 logical-name
equivalence (buffer,addr,itmlat(3))
data itmlet /4. '0305'X,6*0/
runmod = 0
buff er-addr = Xloc (ete-f lage)
call
if (iand(ete-flags, '4000'X) .eq. 0) then
runmod = TERM-TEST ('SYSSIIIPUT') t 1

end if
return
end

SYS$GETJPI (e , , itmlst e , ,)

D-11

Appendix D: L O W - L E V E L U T I L I T I E S

integer function term-test (logical-name)
implicit none
integer DIB$B-DEVCLASS, DIB$K-LENGTH, DC$-TERM
character*(*) logical-name
parameter (DIB$B-DEVCLASS = '00000004'X)
parameter (DCS-TERM = '00000042'X)
byte dib-record (0:4)
byte dib-b-devclaes
character*5 chr-record
equivalence (chr-record,dib-record)
equivalence (dib-b-devclass, dib-record(D1BSB-DEVCLASS))
call SYS$GETDEV(logical-name,,chr-record,,)
term-test = 0
if (dib-b-devclass .eq. DC$-TERM) term-test = 1
return
end

R E M A R K D.11

And here is the CDC/NOS inipleinentat ion:

subrout ine FBI
$ (runmod)
integer runmod
integer runtyp
runmod = 0
call JOBSTAT (6HJOBORG, runtyp)
if (runtyp .eq. 3) runmod = 1
return
end

R E M A R K 0 . 1 2

Some operating systems refuse to give infortnation of this type. In such a case FBI returns zero.

D-12

5D.8 GET LENGTH EXCLUDING TRAILING BLANKS: LENETB

SD.8 GET LENGTH EXCLUDING TRAILING BLANKS: LENETB

Function LENETB receives a character string as an argument, and returns its length when
all trailing blanks are excluded.

Calling Sequence

I L = LEMETB (TEXT) I

Input Argument

TEXT

Character string.

Function Ret urn

LENETB The length of the argument string excluding all trailing blanks found
when scanning it backwards starting at the passed length. If TEXT con-
tains only blanks, a length of zero is returned.

REMARK 0 . 1 3

Here is the current implementation of LEIIETB:

~~~ ~ 

integer function LEIJETE 
$ (C 1 
implicit none 
character*(*) c 
integer i 
LENETB = len(c) 
do 2000 i = len(c),l,-l 

if (c(i:i) .ne. ' ' 1  
LENETB = i-1 

2000 continue 
return 
end 

return 

EXAMPLE D.6 

LENETB( ' Hi there ' 1 returns 9, but LEI.JETB( ' ' 1 returns zero. 

D-13 



Appendlx D: LOW-LEVEL UTILITIES 

THIS PACE LEFT BLANK INTENTIONALLY. 

D-14 



cu/\sA 14dllriln L.d‘C.’dl ,r 1 Report Documentation Page 
‘ r L I 1 L e A l l r  ,.a, I 

1. Report No. 
NASA CR-178386 

2. Government Accession No. 3. Recipient’s Catalog No. 

The Computational Structural Mechanics Testbed Architecture 
Volume I11 - The Interface 

4. Title and Subtitle 

December 1988 
5. Report Date 

7. Author(s) 

Carlos A. Felipya 

8. Performing Organization Name and Address 

Lockheed Missiles and Space Company, Inc. 
Research and Development Division 
3251 Hanover Street 

8. Performing Organization Report No. 

LMSC-D878511 
10. WorkUnit No. 

505-63-0 1-10 

Palo Alto, California 94304 - 
12. Sponsoring Agency Name and Address 

NAS 1-18444 
13. Type of Report and Period Covered 

National Aeronautics and Space Administration 
Langley Research Center 
Hampton, VA 23665-5225 

7. Key Words (Suggested by Authors(s)) 
Structural analysis software 
Command language interface software 
Data management software 

14. Sponsoring Agency Code 

18. Distribution Statement 
Unclassified-Unlimited 

Subject Category 39 

I 

15. Supplementary Notes 
Current affiliation: Carlos A. Felippa, Center for Space Structures and Controls, Campus Box 429, Uni- 
versity of Colorado, Boulder, CO 80309-0429 

9. Security Classif.(of this report) 
Unclassified 

Langley Technical Monitor: W. Jefferson Stroud 

This is the third of a set of five volumes which describe the software architecture for the Computational 
Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed 
Palo Alto Research Laboratory, the architecture is composed of the command language (CLAMP), the 
command language interpreter (CLIP), and the data manager (GAL). Volumes I, 11, and I11 (NASA CR’s 
178384, 178385, and 178386, respectively) describe CLAMP and CLIP and the CLIP-processor interface. 
Volumes IV and V (NASA CR’s 178387 and 178388, respectively) describe GAL and its low-level I/O. 
CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control 
the flow of execution of processors written for NICE. Volume I11 describes the CLIP-Processor interface 
and related topics. It is intended only for processor developers. 

16. Abstract 

20. Security Classif.(of this page) 21. No. of Pages 22. Price 
Unclassified 212 A10 

I I 

NASA FORM 1698 OCT 88 

For sale by the National Technical Information Service, Springfield, Virginia 22161-21 71 


